时变窗长时频峰值滤波去除地震数据中的随机噪声

IF 2 4区 地球科学 Q2 GEOCHEMISTRY & GEOPHYSICS
Pengjun Yu, Yue Li, Hongbo Lin, N. Wu
{"title":"时变窗长时频峰值滤波去除地震数据中的随机噪声","authors":"Pengjun Yu, Yue Li, Hongbo Lin, N. Wu","doi":"10.1515/acgeo-2016-0059","DOIUrl":null,"url":null,"abstract":"Time-frequency peak filtering (TFPF) is an effective tool for the removal of random noise and can be used to process seismic data with a low signal- to-noise ratio. A crucial aspect of this algorithm is the choice of window length (WL) of the time-frequency distribution. Whereas a fixed WL cannot simultaneously preserve signal and attenuate noise, timevarying WLs can achieve this goal. We propose a new method, L-DVV (delay vector variance), which successfully processes non-stationary signals by using the surrogate to measure the non-linearity of a time series. This method is sensitive to random noise and can accurately recover seismic signal masked by noise. Since the linearity criterion also meets the unbiased estimation criterion of the TFPF algorithm, the L-DVV method can be used for time-varying WL TFPF processing. Analysis of synthetic and real seismic data shows that the time-varying WL TFPF algorithm is effective at removing noise and recovering seismic signal.","PeriodicalId":50898,"journal":{"name":"Acta Geophysica","volume":"64 1","pages":"1703-1714"},"PeriodicalIF":2.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/acgeo-2016-0059","citationCount":"11","resultStr":"{\"title\":\"Removal of Random Noise in Seismic Data by Time-varying Window-length Time-frequency Peak Filtering\",\"authors\":\"Pengjun Yu, Yue Li, Hongbo Lin, N. Wu\",\"doi\":\"10.1515/acgeo-2016-0059\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Time-frequency peak filtering (TFPF) is an effective tool for the removal of random noise and can be used to process seismic data with a low signal- to-noise ratio. A crucial aspect of this algorithm is the choice of window length (WL) of the time-frequency distribution. Whereas a fixed WL cannot simultaneously preserve signal and attenuate noise, timevarying WLs can achieve this goal. We propose a new method, L-DVV (delay vector variance), which successfully processes non-stationary signals by using the surrogate to measure the non-linearity of a time series. This method is sensitive to random noise and can accurately recover seismic signal masked by noise. Since the linearity criterion also meets the unbiased estimation criterion of the TFPF algorithm, the L-DVV method can be used for time-varying WL TFPF processing. Analysis of synthetic and real seismic data shows that the time-varying WL TFPF algorithm is effective at removing noise and recovering seismic signal.\",\"PeriodicalId\":50898,\"journal\":{\"name\":\"Acta Geophysica\",\"volume\":\"64 1\",\"pages\":\"1703-1714\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2016-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/acgeo-2016-0059\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Geophysica\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1515/acgeo-2016-0059\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Geophysica","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1515/acgeo-2016-0059","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 11

摘要

时频峰值滤波(TFPF)是一种去除随机噪声的有效方法,可用于处理低信噪比的地震资料。该算法的一个关键方面是时频分布窗口长度的选择。固定的WL不能同时保持信号和衰减噪声,而时变的WL可以实现这一目标。我们提出了一种新的方法,L-DVV(延迟向量方差),它通过使用代理来测量时间序列的非线性,成功地处理了非平稳信号。该方法对随机噪声敏感,能准确地恢复被噪声掩盖的地震信号。由于线性准则也满足TFPF算法的无偏估计准则,因此L-DVV方法可用于时变WL TFPF处理。对合成地震数据和实际地震数据的分析表明,时变WL TFPF算法在去噪和恢复地震信号方面是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Removal of Random Noise in Seismic Data by Time-varying Window-length Time-frequency Peak Filtering
Time-frequency peak filtering (TFPF) is an effective tool for the removal of random noise and can be used to process seismic data with a low signal- to-noise ratio. A crucial aspect of this algorithm is the choice of window length (WL) of the time-frequency distribution. Whereas a fixed WL cannot simultaneously preserve signal and attenuate noise, timevarying WLs can achieve this goal. We propose a new method, L-DVV (delay vector variance), which successfully processes non-stationary signals by using the surrogate to measure the non-linearity of a time series. This method is sensitive to random noise and can accurately recover seismic signal masked by noise. Since the linearity criterion also meets the unbiased estimation criterion of the TFPF algorithm, the L-DVV method can be used for time-varying WL TFPF processing. Analysis of synthetic and real seismic data shows that the time-varying WL TFPF algorithm is effective at removing noise and recovering seismic signal.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acta Geophysica
Acta Geophysica 地学-地球化学与地球物理
CiteScore
3.90
自引率
13.00%
发文量
251
审稿时长
5.3 months
期刊介绍: Acta Geophysica is open to all kinds of manuscripts including research and review articles, short communications, comments to published papers, letters to the Editor as well as book reviews. Some of the issues are fully devoted to particular topics; we do encourage proposals for such topical issues. We accept submissions from scientists world-wide, offering high scientific and editorial standard and comprehensive treatment of the discussed topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信