{"title":"一种新型苯酚降解菌株的分离、动力学和性能研究","authors":"Wen Zhang, X. Xia","doi":"10.15255/cabeq.2019.1685","DOIUrl":null,"url":null,"abstract":"Efficient phenol-degrading bacteria is still the key to the biological treatment of phenol-containing wastewater. In this research, a novel phenol-degrading strain N8 was isolated. According to the 16S rDNA identification, it was concluded that the N8 strain was Bacillus sp. IARI-J-20. The wastewater treatment experiments showed that the phenol degrading rate of N8 reached 92.8 % at 24 h with the inoculation amount of 15 %, temperature of 30 °C, pH of 7.2, yeast extract addition of 0.08 %, and initial phenol concentration of 225 mg L–1. Haldane’s model was fit for the growth kinetics of the phenol-degrading strain N8 over a wide range of initial phenol concentrations (50–1200 mg L–1), with kinetic values μmax = 0.33 h−1, Ks = 79.16 mg L–1, and Ki = 122 mg L–1. The yield coefficient reached maximal value when the phenol concentration was 400 mg L–1. When the initial phenol concentration was more than 400 mg L–1, the inhibition effect of phenol became predominant.","PeriodicalId":9765,"journal":{"name":"Chemical and Biochemical Engineering Quarterly","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Isolation, Kinetics, and Performance of a Novel Phenol Degrading Strain\",\"authors\":\"Wen Zhang, X. Xia\",\"doi\":\"10.15255/cabeq.2019.1685\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Efficient phenol-degrading bacteria is still the key to the biological treatment of phenol-containing wastewater. In this research, a novel phenol-degrading strain N8 was isolated. According to the 16S rDNA identification, it was concluded that the N8 strain was Bacillus sp. IARI-J-20. The wastewater treatment experiments showed that the phenol degrading rate of N8 reached 92.8 % at 24 h with the inoculation amount of 15 %, temperature of 30 °C, pH of 7.2, yeast extract addition of 0.08 %, and initial phenol concentration of 225 mg L–1. Haldane’s model was fit for the growth kinetics of the phenol-degrading strain N8 over a wide range of initial phenol concentrations (50–1200 mg L–1), with kinetic values μmax = 0.33 h−1, Ks = 79.16 mg L–1, and Ki = 122 mg L–1. The yield coefficient reached maximal value when the phenol concentration was 400 mg L–1. When the initial phenol concentration was more than 400 mg L–1, the inhibition effect of phenol became predominant.\",\"PeriodicalId\":9765,\"journal\":{\"name\":\"Chemical and Biochemical Engineering Quarterly\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical and Biochemical Engineering Quarterly\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.15255/cabeq.2019.1685\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical and Biochemical Engineering Quarterly","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.15255/cabeq.2019.1685","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Isolation, Kinetics, and Performance of a Novel Phenol Degrading Strain
Efficient phenol-degrading bacteria is still the key to the biological treatment of phenol-containing wastewater. In this research, a novel phenol-degrading strain N8 was isolated. According to the 16S rDNA identification, it was concluded that the N8 strain was Bacillus sp. IARI-J-20. The wastewater treatment experiments showed that the phenol degrading rate of N8 reached 92.8 % at 24 h with the inoculation amount of 15 %, temperature of 30 °C, pH of 7.2, yeast extract addition of 0.08 %, and initial phenol concentration of 225 mg L–1. Haldane’s model was fit for the growth kinetics of the phenol-degrading strain N8 over a wide range of initial phenol concentrations (50–1200 mg L–1), with kinetic values μmax = 0.33 h−1, Ks = 79.16 mg L–1, and Ki = 122 mg L–1. The yield coefficient reached maximal value when the phenol concentration was 400 mg L–1. When the initial phenol concentration was more than 400 mg L–1, the inhibition effect of phenol became predominant.
期刊介绍:
The journal provides an international forum for presentation of original papers, reviews and discussions on the latest developments in chemical and biochemical engineering. The scope of the journal is wide and no limitation except relevance to chemical and biochemical engineering is required.
The criteria for the acceptance of papers are originality, quality of work and clarity of style. All papers are subject to reviewing by at least two international experts (blind peer review).
The language of the journal is English. Final versions of the manuscripts are subject to metric (SI units and IUPAC recommendations) and English language reviewing.
Editor and Editorial board make the final decision about acceptance of a manuscript.
Page charges are excluded.