Ana María García Lomeli, Santos Hernández Hernández
{"title":"皮莱对帕多万数字和2的幂的问题","authors":"Ana María García Lomeli, Santos Hernández Hernández","doi":"10.15446/recolma.v53n1.81034","DOIUrl":null,"url":null,"abstract":"Let (Pn)n≥0 be the Padovan sequence given by P0 = 0, P1 = P2 = 1 and the recurrence formula Pn+3 = Pn+1 + Pn for all n ≥ 0. In this note we study and completely solve the Diophantine equation Pn - 2m = Pn1 - 2m1 in non-negative integers (n, m, n1, m1).","PeriodicalId":38102,"journal":{"name":"Revista Colombiana de Matematicas","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.15446/recolma.v53n1.81034","citationCount":"7","resultStr":"{\"title\":\"Pillai's problem with Padovan numbers and powers of two\",\"authors\":\"Ana María García Lomeli, Santos Hernández Hernández\",\"doi\":\"10.15446/recolma.v53n1.81034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let (Pn)n≥0 be the Padovan sequence given by P0 = 0, P1 = P2 = 1 and the recurrence formula Pn+3 = Pn+1 + Pn for all n ≥ 0. In this note we study and completely solve the Diophantine equation Pn - 2m = Pn1 - 2m1 in non-negative integers (n, m, n1, m1).\",\"PeriodicalId\":38102,\"journal\":{\"name\":\"Revista Colombiana de Matematicas\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.15446/recolma.v53n1.81034\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revista Colombiana de Matematicas\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15446/recolma.v53n1.81034\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Colombiana de Matematicas","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15446/recolma.v53n1.81034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
Pillai's problem with Padovan numbers and powers of two
Let (Pn)n≥0 be the Padovan sequence given by P0 = 0, P1 = P2 = 1 and the recurrence formula Pn+3 = Pn+1 + Pn for all n ≥ 0. In this note we study and completely solve the Diophantine equation Pn - 2m = Pn1 - 2m1 in non-negative integers (n, m, n1, m1).