facomdi Bruno Hopf代数

Q4 Mathematics
H. Figueroa, Jose M. Gracia-Bondia, Joseph C. Varilly
{"title":"facomdi Bruno Hopf代数","authors":"H. Figueroa, Jose M. Gracia-Bondia, Joseph C. Varilly","doi":"10.15446/recolma.v56n1.105611","DOIUrl":null,"url":null,"abstract":"This is a short review on the Faà di Bruno formulas, implementing composition of real-analytic functions, and a Hopf algebra associated to such formulas. This structure provides, among several other things, a short proof of the Lie-Scheffers theorem, and relates the Lagrange inversion formulas with antipodes. It is also the maximal commutative Hopf subalgebra of the one used by Connes and Moscovici to study diffeomorphisms in a noncommutative geometry setting. The link of Faà di Bruno formulas with the theory of set partitions is developed in some detail.","PeriodicalId":38102,"journal":{"name":"Revista Colombiana de Matematicas","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2005-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Faà di Bruno Hopf algebras\",\"authors\":\"H. Figueroa, Jose M. Gracia-Bondia, Joseph C. Varilly\",\"doi\":\"10.15446/recolma.v56n1.105611\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This is a short review on the Faà di Bruno formulas, implementing composition of real-analytic functions, and a Hopf algebra associated to such formulas. This structure provides, among several other things, a short proof of the Lie-Scheffers theorem, and relates the Lagrange inversion formulas with antipodes. It is also the maximal commutative Hopf subalgebra of the one used by Connes and Moscovici to study diffeomorphisms in a noncommutative geometry setting. The link of Faà di Bruno formulas with the theory of set partitions is developed in some detail.\",\"PeriodicalId\":38102,\"journal\":{\"name\":\"Revista Colombiana de Matematicas\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revista Colombiana de Matematicas\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15446/recolma.v56n1.105611\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Colombiana de Matematicas","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15446/recolma.v56n1.105611","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 6

摘要

这是一个简短的回顾facomdi Bruno公式,实现实解析函数的复合,和Hopf代数相关的公式。这个结构提供了一些其他的东西,一个简短的李-谢弗定理的证明,并将拉格朗日反演公式与对映体联系起来。它也是cones和Moscovici用来研究非交换几何环境中微分同态的最大可交换Hopf子代数。详细地讨论了facomodi Bruno公式与集划分理论的联系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Faà di Bruno Hopf algebras
This is a short review on the Faà di Bruno formulas, implementing composition of real-analytic functions, and a Hopf algebra associated to such formulas. This structure provides, among several other things, a short proof of the Lie-Scheffers theorem, and relates the Lagrange inversion formulas with antipodes. It is also the maximal commutative Hopf subalgebra of the one used by Connes and Moscovici to study diffeomorphisms in a noncommutative geometry setting. The link of Faà di Bruno formulas with the theory of set partitions is developed in some detail.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Revista Colombiana de Matematicas
Revista Colombiana de Matematicas Mathematics-Mathematics (all)
CiteScore
0.60
自引率
0.00%
发文量
7
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信