烧结温度对ZnO纳米结构结构、形态和湿度传感性能的影响

IF 1 4区 材料科学
A. Zaidi, K. Tiwari, R. R. Awasthi, K. Dubey
{"title":"烧结温度对ZnO纳米结构结构、形态和湿度传感性能的影响","authors":"A. Zaidi, K. Tiwari, R. R. Awasthi, K. Dubey","doi":"10.15251/jor.2023.194.411","DOIUrl":null,"url":null,"abstract":"ZnO metal oxide powder was prepared using co-precipitation method and the effect of sintering temperature was studied. Powder X-ray diffraction (PXRD) technique has been used to investigate the crystal structure and phase analysis. The wurtzite hexagonal crystal structure of the ZnO powder has been clearly seen in the PXRD pattern. Using the Scherer’s formula, the average crystallite size of ZnO powder was determined to be between 27 and 37 nm. The surface has grown spherical nanoparticles with size varying from ~100 nm to ~200 nm, as shown in the scanning electron microscopy (SEM) photograph.","PeriodicalId":54394,"journal":{"name":"Journal of Ovonic Research","volume":"1 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of sintering temperature on the structural, morphological and humidity sensing properties of ZnO nanostructure\",\"authors\":\"A. Zaidi, K. Tiwari, R. R. Awasthi, K. Dubey\",\"doi\":\"10.15251/jor.2023.194.411\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ZnO metal oxide powder was prepared using co-precipitation method and the effect of sintering temperature was studied. Powder X-ray diffraction (PXRD) technique has been used to investigate the crystal structure and phase analysis. The wurtzite hexagonal crystal structure of the ZnO powder has been clearly seen in the PXRD pattern. Using the Scherer’s formula, the average crystallite size of ZnO powder was determined to be between 27 and 37 nm. The surface has grown spherical nanoparticles with size varying from ~100 nm to ~200 nm, as shown in the scanning electron microscopy (SEM) photograph.\",\"PeriodicalId\":54394,\"journal\":{\"name\":\"Journal of Ovonic Research\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Ovonic Research\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.15251/jor.2023.194.411\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Ovonic Research","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.15251/jor.2023.194.411","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

采用共沉淀法制备氧化锌粉末,研究了烧结温度对氧化锌粉末的影响。采用粉末x射线衍射(PXRD)技术对其晶体结构进行了研究,并进行了物相分析。在PXRD图中可以清楚地看到ZnO粉末的纤锌矿六方晶体结构。利用Scherer公式,确定ZnO粉体的平均晶粒尺寸在27 ~ 37 nm之间。如扫描电镜(SEM)照片所示,表面生长出粒径从~100 nm到~200 nm不等的球形纳米颗粒。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effect of sintering temperature on the structural, morphological and humidity sensing properties of ZnO nanostructure
ZnO metal oxide powder was prepared using co-precipitation method and the effect of sintering temperature was studied. Powder X-ray diffraction (PXRD) technique has been used to investigate the crystal structure and phase analysis. The wurtzite hexagonal crystal structure of the ZnO powder has been clearly seen in the PXRD pattern. Using the Scherer’s formula, the average crystallite size of ZnO powder was determined to be between 27 and 37 nm. The surface has grown spherical nanoparticles with size varying from ~100 nm to ~200 nm, as shown in the scanning electron microscopy (SEM) photograph.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Ovonic Research
Journal of Ovonic Research Materials Science-Electronic, Optical and Magnetic Materials
CiteScore
1.60
自引率
20.00%
发文量
77
期刊介绍: Journal of Ovonic Research (JOR) appears with six issues per year and is open to the reviews, papers, short communications and breakings news inserted as Short Notes, in the field of ovonic (mainly chalcogenide) materials for memories, smart materials based on ovonic materials (combinations of various elements including chalcogenides), materials with nano-structures based on various alloys, as well as semiconducting materials and alloys based on amorphous silicon, germanium, carbon in their various nanostructured forms, either simple or doped/alloyed with hydrogen, fluorine, chlorine and other elements of high interest for applications in electronics and optoelectronics. Papers on minerals with possible applications in electronics and optoelectronics are encouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信