{"title":"蛋白质界面残基的多维空间表征","authors":"Tingyi Cao, Yongxiao Yang, Xinqi Gong","doi":"10.1515/mlbmb-2016-0004","DOIUrl":null,"url":null,"abstract":"Abstract Proteins interact to perform biological functions through specific interface residues. Correctly understanding the mechanisms of interface recognition and prediction are important for many aspects of life science studies. Here, we report a novel architecture to study protein interface residues. In our method, multiple dimensional space was built on some meaningful features. Then we divided the space and put all the surface residues into the regions according to their features’ values. Interestingly, interface residues were found to prefer some grids clustered together. We obtained excellent result on a public and verified data benchmark. Our approach not only opens up a new train of thought for interface residue prediction, but also will help to understand proteins interaction more deeply.","PeriodicalId":34018,"journal":{"name":"Computational and Mathematical Biophysics","volume":"4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2016-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/mlbmb-2016-0004","citationCount":"0","resultStr":"{\"title\":\"Multiple dimensional space for protein interface residue characterization\",\"authors\":\"Tingyi Cao, Yongxiao Yang, Xinqi Gong\",\"doi\":\"10.1515/mlbmb-2016-0004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Proteins interact to perform biological functions through specific interface residues. Correctly understanding the mechanisms of interface recognition and prediction are important for many aspects of life science studies. Here, we report a novel architecture to study protein interface residues. In our method, multiple dimensional space was built on some meaningful features. Then we divided the space and put all the surface residues into the regions according to their features’ values. Interestingly, interface residues were found to prefer some grids clustered together. We obtained excellent result on a public and verified data benchmark. Our approach not only opens up a new train of thought for interface residue prediction, but also will help to understand proteins interaction more deeply.\",\"PeriodicalId\":34018,\"journal\":{\"name\":\"Computational and Mathematical Biophysics\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/mlbmb-2016-0004\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational and Mathematical Biophysics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/mlbmb-2016-0004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational and Mathematical Biophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/mlbmb-2016-0004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
Multiple dimensional space for protein interface residue characterization
Abstract Proteins interact to perform biological functions through specific interface residues. Correctly understanding the mechanisms of interface recognition and prediction are important for many aspects of life science studies. Here, we report a novel architecture to study protein interface residues. In our method, multiple dimensional space was built on some meaningful features. Then we divided the space and put all the surface residues into the regions according to their features’ values. Interestingly, interface residues were found to prefer some grids clustered together. We obtained excellent result on a public and verified data benchmark. Our approach not only opens up a new train of thought for interface residue prediction, but also will help to understand proteins interaction more deeply.