冷冻电子显微镜图像的快速和鲁棒定向

Q2 Mathematics
Guoliang Xu, Xia Wang, Ming Li, Zhucui Jing
{"title":"冷冻电子显微镜图像的快速和鲁棒定向","authors":"Guoliang Xu, Xia Wang, Ming Li, Zhucui Jing","doi":"10.1515/mlbmb-2015-0010","DOIUrl":null,"url":null,"abstract":"Abstract We present an efficient and reliable algorithm for determining the orientations of noisy images obtained fromprojections of a three-dimensional object. Based on the linear relationship among the common line vectors in one image plane, we construct a sparse matrix, and show that the coordinates of the common line vectors are the eigenvectors of the matrix with respect to the eigenvalue 1. The projection directions and in-plane rotation angles can be determined fromthese coordinates. A robust computation method of common lines in the real space using aweighted cross-correlation function is proposed to increase the robustness of the algorithm against the noise. A small number of good leading images, which have the maximal dissimilarity, are used to increase the reliability of orientations and improve the efficiency for determining the orientations of all the images. Numerical experiments show that the proposed algorithm is effective and efficient.","PeriodicalId":34018,"journal":{"name":"Computational and Mathematical Biophysics","volume":"3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2015-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/mlbmb-2015-0010","citationCount":"0","resultStr":"{\"title\":\"Fast and Robust Orientation of Cryo-Electron Microscopy Images\",\"authors\":\"Guoliang Xu, Xia Wang, Ming Li, Zhucui Jing\",\"doi\":\"10.1515/mlbmb-2015-0010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We present an efficient and reliable algorithm for determining the orientations of noisy images obtained fromprojections of a three-dimensional object. Based on the linear relationship among the common line vectors in one image plane, we construct a sparse matrix, and show that the coordinates of the common line vectors are the eigenvectors of the matrix with respect to the eigenvalue 1. The projection directions and in-plane rotation angles can be determined fromthese coordinates. A robust computation method of common lines in the real space using aweighted cross-correlation function is proposed to increase the robustness of the algorithm against the noise. A small number of good leading images, which have the maximal dissimilarity, are used to increase the reliability of orientations and improve the efficiency for determining the orientations of all the images. Numerical experiments show that the proposed algorithm is effective and efficient.\",\"PeriodicalId\":34018,\"journal\":{\"name\":\"Computational and Mathematical Biophysics\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/mlbmb-2015-0010\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational and Mathematical Biophysics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/mlbmb-2015-0010\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational and Mathematical Biophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/mlbmb-2015-0010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

摘要本文提出了一种高效可靠的算法,用于确定三维物体投影得到的噪声图像的方向。基于一个图像平面上的公共线向量之间的线性关系,构造了一个稀疏矩阵,并证明了公共线向量的坐标是该矩阵关于特征值1的特征向量。投影方向和面内旋转角度可以由这些坐标确定。为了提高算法对噪声的鲁棒性,提出了一种利用加权互相关函数在实空间中鲁棒计算共线的方法。采用少量差异性最大的优秀先导图像,增加了定向的可靠性,提高了确定所有图像定向的效率。数值实验表明,该算法是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fast and Robust Orientation of Cryo-Electron Microscopy Images
Abstract We present an efficient and reliable algorithm for determining the orientations of noisy images obtained fromprojections of a three-dimensional object. Based on the linear relationship among the common line vectors in one image plane, we construct a sparse matrix, and show that the coordinates of the common line vectors are the eigenvectors of the matrix with respect to the eigenvalue 1. The projection directions and in-plane rotation angles can be determined fromthese coordinates. A robust computation method of common lines in the real space using aweighted cross-correlation function is proposed to increase the robustness of the algorithm against the noise. A small number of good leading images, which have the maximal dissimilarity, are used to increase the reliability of orientations and improve the efficiency for determining the orientations of all the images. Numerical experiments show that the proposed algorithm is effective and efficient.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computational and Mathematical Biophysics
Computational and Mathematical Biophysics Mathematics-Mathematical Physics
CiteScore
2.50
自引率
0.00%
发文量
8
审稿时长
30 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信