Tiantian Liu, Shiyang Bai, Bin Tu, Minxin Chen, B. Lu
{"title":"有限元模拟的膜-通道蛋白质系统网格构建","authors":"Tiantian Liu, Shiyang Bai, Bin Tu, Minxin Chen, B. Lu","doi":"10.1515/mlbmb-2015-0008","DOIUrl":null,"url":null,"abstract":"Abstract We present a method of constructing the volume meshes of the membrane-channel protein system for finite element simulation of ion channels. The membrane channel system consists of the solvent region and the membrane-protein region. Our method focuses on labeling the tetrahedra in the solvent and membrane-protein regions and collecting the interface triangles between different regions. It contains two stages. Firstly, a volume mesh conforming the surface of the channel protein is generated by the surface and volume mesh generation tools: TMSmesh and TetGen. Then a walk-and-detect algorithm is used to identify the pore region to embed the membrane correctly. This method is shown to be robust because of its independence of the pore structure of the ion channels. In addition, we can also get the information of whether the ion channel is open or closed by the walk-and-detect algorithm. An on-line meshing procedure will be available at our website www.continuummodel.org.","PeriodicalId":34018,"journal":{"name":"Computational and Mathematical Biophysics","volume":"3 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2015-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/mlbmb-2015-0008","citationCount":"13","resultStr":"{\"title\":\"Membrane-Channel Protein System Mesh Construction for Finite Element Simulations\",\"authors\":\"Tiantian Liu, Shiyang Bai, Bin Tu, Minxin Chen, B. Lu\",\"doi\":\"10.1515/mlbmb-2015-0008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We present a method of constructing the volume meshes of the membrane-channel protein system for finite element simulation of ion channels. The membrane channel system consists of the solvent region and the membrane-protein region. Our method focuses on labeling the tetrahedra in the solvent and membrane-protein regions and collecting the interface triangles between different regions. It contains two stages. Firstly, a volume mesh conforming the surface of the channel protein is generated by the surface and volume mesh generation tools: TMSmesh and TetGen. Then a walk-and-detect algorithm is used to identify the pore region to embed the membrane correctly. This method is shown to be robust because of its independence of the pore structure of the ion channels. In addition, we can also get the information of whether the ion channel is open or closed by the walk-and-detect algorithm. An on-line meshing procedure will be available at our website www.continuummodel.org.\",\"PeriodicalId\":34018,\"journal\":{\"name\":\"Computational and Mathematical Biophysics\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/mlbmb-2015-0008\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational and Mathematical Biophysics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/mlbmb-2015-0008\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational and Mathematical Biophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/mlbmb-2015-0008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
Membrane-Channel Protein System Mesh Construction for Finite Element Simulations
Abstract We present a method of constructing the volume meshes of the membrane-channel protein system for finite element simulation of ion channels. The membrane channel system consists of the solvent region and the membrane-protein region. Our method focuses on labeling the tetrahedra in the solvent and membrane-protein regions and collecting the interface triangles between different regions. It contains two stages. Firstly, a volume mesh conforming the surface of the channel protein is generated by the surface and volume mesh generation tools: TMSmesh and TetGen. Then a walk-and-detect algorithm is used to identify the pore region to embed the membrane correctly. This method is shown to be robust because of its independence of the pore structure of the ion channels. In addition, we can also get the information of whether the ion channel is open or closed by the walk-and-detect algorithm. An on-line meshing procedure will be available at our website www.continuummodel.org.