化学图的k正则边连通性

IF 1.8 3区 化学 Q3 CHEMISTRY, INORGANIC & NUCLEAR
S. Ediz, İdris Çiftçi
{"title":"化学图的k正则边连通性","authors":"S. Ediz, İdris Çiftçi","doi":"10.1515/mgmc-2022-0014","DOIUrl":null,"url":null,"abstract":"Abstract Quantitative structure property research works, which are the essential part in chemical information and modelling, give basic underlying topological properties for chemical substances. This information enables conducting more feasible studies between theory and practice. Connectivity concept in chemical graph theory gives information about underlying topology of chemical structures, fault tolerance of molecules, and vulnerability of chemical networks. In this study we first defined two novel types of conditional connectivity measures based on regularity notion: k-regular edge connectivity and almost k-regular edge connectivity in chemical graph theory literature. We computed these new graph invariants for cycles, complete graphs, and Cartesian product of cycles. Our results will be applied to calculate k-regular edge connectivity of some nanotubes which are stated as Cartesian product of cycles. These calculations give information about fault tolerance capacity and vulnerability of these chemical structures.","PeriodicalId":48891,"journal":{"name":"Main Group Metal Chemistry","volume":"45 1","pages":"106 - 110"},"PeriodicalIF":1.8000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On k-regular edge connectivity of chemical graphs\",\"authors\":\"S. Ediz, İdris Çiftçi\",\"doi\":\"10.1515/mgmc-2022-0014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Quantitative structure property research works, which are the essential part in chemical information and modelling, give basic underlying topological properties for chemical substances. This information enables conducting more feasible studies between theory and practice. Connectivity concept in chemical graph theory gives information about underlying topology of chemical structures, fault tolerance of molecules, and vulnerability of chemical networks. In this study we first defined two novel types of conditional connectivity measures based on regularity notion: k-regular edge connectivity and almost k-regular edge connectivity in chemical graph theory literature. We computed these new graph invariants for cycles, complete graphs, and Cartesian product of cycles. Our results will be applied to calculate k-regular edge connectivity of some nanotubes which are stated as Cartesian product of cycles. These calculations give information about fault tolerance capacity and vulnerability of these chemical structures.\",\"PeriodicalId\":48891,\"journal\":{\"name\":\"Main Group Metal Chemistry\",\"volume\":\"45 1\",\"pages\":\"106 - 110\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Main Group Metal Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1515/mgmc-2022-0014\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Main Group Metal Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1515/mgmc-2022-0014","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 1

摘要

定量结构性质研究工作给出了化学物质的基本底层拓扑性质,是化学信息和化学建模的重要组成部分。这些信息可以在理论和实践之间进行更可行的研究。化学图论中的连通性概念给出了化学结构的底层拓扑结构、分子的容错性和化学网络的脆弱性等信息。本文首先定义了化学图论文献中基于正则性概念的两种新的条件连通性测度:k-规则边连通性和几乎k-规则边连通性。我们计算了这些新的图不变量对于循环,完全图,和循环的笛卡尔积。我们的结果将应用于计算一些用循环的笛卡尔积表示的纳米管的k规则边连通性。这些计算提供了有关这些化学结构的容错能力和脆弱性的信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On k-regular edge connectivity of chemical graphs
Abstract Quantitative structure property research works, which are the essential part in chemical information and modelling, give basic underlying topological properties for chemical substances. This information enables conducting more feasible studies between theory and practice. Connectivity concept in chemical graph theory gives information about underlying topology of chemical structures, fault tolerance of molecules, and vulnerability of chemical networks. In this study we first defined two novel types of conditional connectivity measures based on regularity notion: k-regular edge connectivity and almost k-regular edge connectivity in chemical graph theory literature. We computed these new graph invariants for cycles, complete graphs, and Cartesian product of cycles. Our results will be applied to calculate k-regular edge connectivity of some nanotubes which are stated as Cartesian product of cycles. These calculations give information about fault tolerance capacity and vulnerability of these chemical structures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Main Group Metal Chemistry
Main Group Metal Chemistry CHEMISTRY, INORGANIC & NUCLEAR-CHEMISTRY, ORGANIC
CiteScore
4.10
自引率
27.80%
发文量
21
审稿时长
4 weeks
期刊介绍: This journal is committed to the publication of short communications, original research, and review articles within the field of main group metal and semi-metal chemistry, Main Group Metal Chemistry is an open-access, peer-reviewed journal that publishes in ongoing way. Papers addressing the theoretical, spectroscopic, mechanistic and synthetic aspects of inorganic, coordination and organometallic main group metal and semi-metal compounds, including zinc, cadmium and mercury are welcome. The journal also publishes studies relating to environmental aspects of these metals, their toxicology, release pathways and fate. Articles on the applications of main group metal chemistry, including in the fields of polymer chemistry, agriculture, electronics and catalysis, are also accepted.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信