M. Cutini, Corrado Costa, M. Brambilla, C. Bisaglia
{"title":"基于人工神经网络的农用轮胎三维足迹与牵引力关系研究","authors":"M. Cutini, Corrado Costa, M. Brambilla, C. Bisaglia","doi":"10.13031/aea.13851","DOIUrl":null,"url":null,"abstract":"HighlightsImprovement of tractor traction provides better field efficiency.Drawbar pull increased with tire footprint length.Drawbar pull decreased with increasing tire footprint volume and depth.3D footprint parameters, which the 2D footprint do not contain, affected the drawbar pull significantly.The ANN highlighted the relation adequately.Abstract.Improving the traction of an agricultural tractor on the field increases its working efficiency and capacity. Heavy work, like plowing, entails high levels of tire slip, which is directly related to power loss when the transmission of drawbar pull is required. Accordingly, it is possible to hypothesize that a tire with a higher traction capability could increase the working efficiency of the machine. The natural evolution for measuring the geometrical parameters of tires has led to the consideration of three-dimensional (3D) footprints since the distribution of the vertical stresses at the soil–tire interface may be highly non-uniform. In this study, the data acquired from 3D footprints of 10 sets of tires underwent processing along with the data from drawbar tests carried out with the same tires on soil terrain at different slip ratios. Subsequently, artificial intelligence multivariate methods based on artificial neural networks allowed traction prediction and verified the importance that the acquired geometrical parameters have on the measured drawbar pull. The study confirmed the correlation of the geometrical parameters of the 3D tire footprint with the drawbar pull and the results of the artificial intelligence modelling underlined the impact of these acquisitions. However, further work that considers various lug geometries is required to extend the generalizability of the studied methodology. Keywords: Field efficiency, Phenolic resin, Traction, Tractor.","PeriodicalId":55501,"journal":{"name":"Applied Engineering in Agriculture","volume":"1 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Relationship between the 3D Footprint of an Agricultural Tire and Drawbar Pull Using an Artificial Neural Network\",\"authors\":\"M. Cutini, Corrado Costa, M. Brambilla, C. Bisaglia\",\"doi\":\"10.13031/aea.13851\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"HighlightsImprovement of tractor traction provides better field efficiency.Drawbar pull increased with tire footprint length.Drawbar pull decreased with increasing tire footprint volume and depth.3D footprint parameters, which the 2D footprint do not contain, affected the drawbar pull significantly.The ANN highlighted the relation adequately.Abstract.Improving the traction of an agricultural tractor on the field increases its working efficiency and capacity. Heavy work, like plowing, entails high levels of tire slip, which is directly related to power loss when the transmission of drawbar pull is required. Accordingly, it is possible to hypothesize that a tire with a higher traction capability could increase the working efficiency of the machine. The natural evolution for measuring the geometrical parameters of tires has led to the consideration of three-dimensional (3D) footprints since the distribution of the vertical stresses at the soil–tire interface may be highly non-uniform. In this study, the data acquired from 3D footprints of 10 sets of tires underwent processing along with the data from drawbar tests carried out with the same tires on soil terrain at different slip ratios. Subsequently, artificial intelligence multivariate methods based on artificial neural networks allowed traction prediction and verified the importance that the acquired geometrical parameters have on the measured drawbar pull. The study confirmed the correlation of the geometrical parameters of the 3D tire footprint with the drawbar pull and the results of the artificial intelligence modelling underlined the impact of these acquisitions. However, further work that considers various lug geometries is required to extend the generalizability of the studied methodology. Keywords: Field efficiency, Phenolic resin, Traction, Tractor.\",\"PeriodicalId\":55501,\"journal\":{\"name\":\"Applied Engineering in Agriculture\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Engineering in Agriculture\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.13031/aea.13851\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"AGRICULTURAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Engineering in Agriculture","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.13031/aea.13851","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
Relationship between the 3D Footprint of an Agricultural Tire and Drawbar Pull Using an Artificial Neural Network
HighlightsImprovement of tractor traction provides better field efficiency.Drawbar pull increased with tire footprint length.Drawbar pull decreased with increasing tire footprint volume and depth.3D footprint parameters, which the 2D footprint do not contain, affected the drawbar pull significantly.The ANN highlighted the relation adequately.Abstract.Improving the traction of an agricultural tractor on the field increases its working efficiency and capacity. Heavy work, like plowing, entails high levels of tire slip, which is directly related to power loss when the transmission of drawbar pull is required. Accordingly, it is possible to hypothesize that a tire with a higher traction capability could increase the working efficiency of the machine. The natural evolution for measuring the geometrical parameters of tires has led to the consideration of three-dimensional (3D) footprints since the distribution of the vertical stresses at the soil–tire interface may be highly non-uniform. In this study, the data acquired from 3D footprints of 10 sets of tires underwent processing along with the data from drawbar tests carried out with the same tires on soil terrain at different slip ratios. Subsequently, artificial intelligence multivariate methods based on artificial neural networks allowed traction prediction and verified the importance that the acquired geometrical parameters have on the measured drawbar pull. The study confirmed the correlation of the geometrical parameters of the 3D tire footprint with the drawbar pull and the results of the artificial intelligence modelling underlined the impact of these acquisitions. However, further work that considers various lug geometries is required to extend the generalizability of the studied methodology. Keywords: Field efficiency, Phenolic resin, Traction, Tractor.
期刊介绍:
This peer-reviewed journal publishes applications of engineering and technology research that address agricultural, food, and biological systems problems. Submissions must include results of practical experiences, tests, or trials presented in a manner and style that will allow easy adaptation by others; results of reviews or studies of installations or applications with substantially new or significant information not readily available in other refereed publications; or a description of successful methods of techniques of education, outreach, or technology transfer.