学生毕业时效性预警系统中数据挖掘分类算法的性能比较

Ari Fadli, Mulki Indana Zulfa, Y. Ramadhani
{"title":"学生毕业时效性预警系统中数据挖掘分类算法的性能比较","authors":"Ari Fadli, Mulki Indana Zulfa, Y. Ramadhani","doi":"10.14710/jtsiskom.6.4.2018.158-163","DOIUrl":null,"url":null,"abstract":"Observation of growing academic data can be carried using data mining methods, for example, to obtain knowledge related to the determinants of timeliness of students graduation. This study conducted a performance comparison of the classification algorithms using decision tree (DT), support vector machine (SVM), and artificial neural network (ANN). This study used students academic data from Faculty of Engineering, Universitas Jenderal Soedirman in the 2014/2015 odd semester until the 2017/2018 odd semester and the attributes that conform to the academic regulations. The analytical method used is CRISP-DM. The results showed that SVM provided the best performance in an accuracy of 90.55% and AUC of 0.959, compared to other algorithms. A Model with SVM algorithm can be implemented in an early warning system for timeliness of student graduation.","PeriodicalId":56231,"journal":{"name":"Jurnal Teknologi dan Sistem Komputer","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Performance Comparison of Data Mining Classification Algorithms for Early Warning System of Students Graduation Timeliness\",\"authors\":\"Ari Fadli, Mulki Indana Zulfa, Y. Ramadhani\",\"doi\":\"10.14710/jtsiskom.6.4.2018.158-163\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Observation of growing academic data can be carried using data mining methods, for example, to obtain knowledge related to the determinants of timeliness of students graduation. This study conducted a performance comparison of the classification algorithms using decision tree (DT), support vector machine (SVM), and artificial neural network (ANN). This study used students academic data from Faculty of Engineering, Universitas Jenderal Soedirman in the 2014/2015 odd semester until the 2017/2018 odd semester and the attributes that conform to the academic regulations. The analytical method used is CRISP-DM. The results showed that SVM provided the best performance in an accuracy of 90.55% and AUC of 0.959, compared to other algorithms. A Model with SVM algorithm can be implemented in an early warning system for timeliness of student graduation.\",\"PeriodicalId\":56231,\"journal\":{\"name\":\"Jurnal Teknologi dan Sistem Komputer\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jurnal Teknologi dan Sistem Komputer\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14710/jtsiskom.6.4.2018.158-163\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Teknologi dan Sistem Komputer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14710/jtsiskom.6.4.2018.158-163","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

可以使用数据挖掘方法对不断增长的学术数据进行观察,例如,获取与学生毕业时效性决定因素相关的知识。本研究对决策树(DT)、支持向量机(SVM)和人工神经网络(ANN)的分类算法进行了性能比较。本研究使用了2014/2015年至2017/2018年的奇数学期,Jenderal Soedirman大学工程学院的学生学术数据和符合学术规定的属性。分析方法为CRISP-DM。结果表明,与其他算法相比,SVM的准确率为90.55%,AUC为0.959。基于支持向量机算法的学生毕业时效性预警模型可以应用于学生毕业时效性预警系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Performance Comparison of Data Mining Classification Algorithms for Early Warning System of Students Graduation Timeliness
Observation of growing academic data can be carried using data mining methods, for example, to obtain knowledge related to the determinants of timeliness of students graduation. This study conducted a performance comparison of the classification algorithms using decision tree (DT), support vector machine (SVM), and artificial neural network (ANN). This study used students academic data from Faculty of Engineering, Universitas Jenderal Soedirman in the 2014/2015 odd semester until the 2017/2018 odd semester and the attributes that conform to the academic regulations. The analytical method used is CRISP-DM. The results showed that SVM provided the best performance in an accuracy of 90.55% and AUC of 0.959, compared to other algorithms. A Model with SVM algorithm can be implemented in an early warning system for timeliness of student graduation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
6
审稿时长
6 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信