{"title":"基于自整定模糊pd的四旋翼飞行器姿态稳定控制","authors":"S. Sumardi, H. Afrisal, Wisnu Dyan Nugroho","doi":"10.14710/jtsiskom.8.2.2020.164-170","DOIUrl":null,"url":null,"abstract":"This research aims to develop a quadrotor control system for maintaining its position and balance from disturbance while hovering. A fast and reliable control technique is required to respond to high maneuverability and high non-linearity of six degrees of freedom system. Hence, this research focuses on designing a Self-Tuning Fuzzy-PD control system for quadrotor’s attitude. The designed control system utilizes input data from the Inertial Navigation System (INS). Then the quadrotor’s attitude is controlled by passing the PWM signal to the flight controller APM 2.6. The result shows that the average absolute error for the roll, pitch, and yaw angles are relatively small, as mentioned consecutively 2.0790, 2.2660, and 1.5280, while the maximum absolute errors are 6.3140, 6.7220, and 3.820.","PeriodicalId":56231,"journal":{"name":"Jurnal Teknologi dan Sistem Komputer","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Attitude stabilization control for quadrotor using self-tuning fuzzy-PD\",\"authors\":\"S. Sumardi, H. Afrisal, Wisnu Dyan Nugroho\",\"doi\":\"10.14710/jtsiskom.8.2.2020.164-170\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This research aims to develop a quadrotor control system for maintaining its position and balance from disturbance while hovering. A fast and reliable control technique is required to respond to high maneuverability and high non-linearity of six degrees of freedom system. Hence, this research focuses on designing a Self-Tuning Fuzzy-PD control system for quadrotor’s attitude. The designed control system utilizes input data from the Inertial Navigation System (INS). Then the quadrotor’s attitude is controlled by passing the PWM signal to the flight controller APM 2.6. The result shows that the average absolute error for the roll, pitch, and yaw angles are relatively small, as mentioned consecutively 2.0790, 2.2660, and 1.5280, while the maximum absolute errors are 6.3140, 6.7220, and 3.820.\",\"PeriodicalId\":56231,\"journal\":{\"name\":\"Jurnal Teknologi dan Sistem Komputer\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jurnal Teknologi dan Sistem Komputer\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14710/jtsiskom.8.2.2020.164-170\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Teknologi dan Sistem Komputer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14710/jtsiskom.8.2.2020.164-170","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Attitude stabilization control for quadrotor using self-tuning fuzzy-PD
This research aims to develop a quadrotor control system for maintaining its position and balance from disturbance while hovering. A fast and reliable control technique is required to respond to high maneuverability and high non-linearity of six degrees of freedom system. Hence, this research focuses on designing a Self-Tuning Fuzzy-PD control system for quadrotor’s attitude. The designed control system utilizes input data from the Inertial Navigation System (INS). Then the quadrotor’s attitude is controlled by passing the PWM signal to the flight controller APM 2.6. The result shows that the average absolute error for the roll, pitch, and yaw angles are relatively small, as mentioned consecutively 2.0790, 2.2660, and 1.5280, while the maximum absolute errors are 6.3140, 6.7220, and 3.820.