在剂量反应研究和顺序表型中检测差异表达基因

IF 0.9 4区 数学 Q3 Mathematics
E. Sweeney, C. Crainiceanu, J. Gertheiss
{"title":"在剂量反应研究和顺序表型中检测差异表达基因","authors":"E. Sweeney, C. Crainiceanu, J. Gertheiss","doi":"10.1515/sagmb-2015-0091","DOIUrl":null,"url":null,"abstract":"Abstract When testing for differentially expressed genes between more than two groups, the groups are often defined by dose levels in dose-response experiments or ordinal phenotypes, such as disease stages. We discuss the potential of a new approach that uses the levels’ ordering without making any structural assumptions, such as monotonicity, by testing for zero variance components in a mixed models framework. Since the mixed effects model approach borrows strength across doses/levels, the test proposed can also be applied when the number of dose levels/phenotypes is large and/or the number of subjects per group is small. We illustrate the new test in simulation studies and on several publicly available datasets and compare it to alternative testing procedures. All tests considered are implemented in R and are publicly available. The new approach offers a very fast and powerful way to test for differentially expressed genes between ordered groups without making restrictive assumptions with respect to the true relationship between factor levels and response.","PeriodicalId":49477,"journal":{"name":"Statistical Applications in Genetics and Molecular Biology","volume":"55 1","pages":"213 - 235"},"PeriodicalIF":0.9000,"publicationDate":"2016-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/sagmb-2015-0091","citationCount":"4","resultStr":"{\"title\":\"Testing differentially expressed genes in dose-response studies and with ordinal phenotypes\",\"authors\":\"E. Sweeney, C. Crainiceanu, J. Gertheiss\",\"doi\":\"10.1515/sagmb-2015-0091\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract When testing for differentially expressed genes between more than two groups, the groups are often defined by dose levels in dose-response experiments or ordinal phenotypes, such as disease stages. We discuss the potential of a new approach that uses the levels’ ordering without making any structural assumptions, such as monotonicity, by testing for zero variance components in a mixed models framework. Since the mixed effects model approach borrows strength across doses/levels, the test proposed can also be applied when the number of dose levels/phenotypes is large and/or the number of subjects per group is small. We illustrate the new test in simulation studies and on several publicly available datasets and compare it to alternative testing procedures. All tests considered are implemented in R and are publicly available. The new approach offers a very fast and powerful way to test for differentially expressed genes between ordered groups without making restrictive assumptions with respect to the true relationship between factor levels and response.\",\"PeriodicalId\":49477,\"journal\":{\"name\":\"Statistical Applications in Genetics and Molecular Biology\",\"volume\":\"55 1\",\"pages\":\"213 - 235\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2016-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/sagmb-2015-0091\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistical Applications in Genetics and Molecular Biology\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/sagmb-2015-0091\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Applications in Genetics and Molecular Biology","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/sagmb-2015-0091","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 4

摘要

当检测多于两组之间的差异表达基因时,通常根据剂量反应实验中的剂量水平或顺序表型(如疾病分期)来定义组。我们讨论了一种新方法的潜力,该方法通过测试混合模型框架中的零方差成分,在不做任何结构性假设(如单调性)的情况下使用水平排序。由于混合效应模型方法借鉴了跨剂量/水平的强度,因此所提出的检验也可以应用于剂量水平/表型数量大和/或每组受试者数量小的情况。我们在模拟研究和几个公开可用的数据集上说明了新的测试,并将其与其他测试程序进行了比较。所有考虑的测试都是用R实现的,并且是公开可用的。新方法提供了一种非常快速和强大的方法来测试有序群体之间差异表达的基因,而无需对因子水平和反应之间的真实关系做出限制性假设。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Testing differentially expressed genes in dose-response studies and with ordinal phenotypes
Abstract When testing for differentially expressed genes between more than two groups, the groups are often defined by dose levels in dose-response experiments or ordinal phenotypes, such as disease stages. We discuss the potential of a new approach that uses the levels’ ordering without making any structural assumptions, such as monotonicity, by testing for zero variance components in a mixed models framework. Since the mixed effects model approach borrows strength across doses/levels, the test proposed can also be applied when the number of dose levels/phenotypes is large and/or the number of subjects per group is small. We illustrate the new test in simulation studies and on several publicly available datasets and compare it to alternative testing procedures. All tests considered are implemented in R and are publicly available. The new approach offers a very fast and powerful way to test for differentially expressed genes between ordered groups without making restrictive assumptions with respect to the true relationship between factor levels and response.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
11.10%
发文量
8
审稿时长
6-12 weeks
期刊介绍: Statistical Applications in Genetics and Molecular Biology seeks to publish significant research on the application of statistical ideas to problems arising from computational biology. The focus of the papers should be on the relevant statistical issues but should contain a succinct description of the relevant biological problem being considered. The range of topics is wide and will include topics such as linkage mapping, association studies, gene finding and sequence alignment, protein structure prediction, design and analysis of microarray data, molecular evolution and phylogenetic trees, DNA topology, and data base search strategies. Both original research and review articles will be warmly received.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信