高剪切应力下的空化现象研究

Q3 Engineering
Zoltán Csuka, R. Olšiak, Zoltán Fuszko
{"title":"高剪切应力下的空化现象研究","authors":"Zoltán Csuka, R. Olšiak, Zoltán Fuszko","doi":"10.1515/scjme-2016-0006","DOIUrl":null,"url":null,"abstract":"Abstract The article describes the theory of cavitation at high values of shear stress in a viscous liquid. For this purpose, a spatial model of two cylindrical shells imposed concentrically was designed. In the narrow gap between the cylinders the temperature, density and viscosity of liquid is constant. Shear stress is induced by the rotary motion of the inner cylinder, resulting in a change of velocity and pressure fields. Due to the pressure drop between the cylinders there is a precondition to the formation of cavitation bubbles at the point of the lowest static pressure. To verify the assumption was made CFD model based on simplified physical model, through which cavitation was qualitatively and quantitatively assessed. In this paper the results of the numerical solution will be presented alongside with basic form of experimental device for physical generation of cavitation at high values of shear stress.","PeriodicalId":35968,"journal":{"name":"Strojnicky Casopis","volume":"66 1","pages":"16 - 7"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/scjme-2016-0006","citationCount":"6","resultStr":"{\"title\":\"Research of Cavitation at High Shear Stress\",\"authors\":\"Zoltán Csuka, R. Olšiak, Zoltán Fuszko\",\"doi\":\"10.1515/scjme-2016-0006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The article describes the theory of cavitation at high values of shear stress in a viscous liquid. For this purpose, a spatial model of two cylindrical shells imposed concentrically was designed. In the narrow gap between the cylinders the temperature, density and viscosity of liquid is constant. Shear stress is induced by the rotary motion of the inner cylinder, resulting in a change of velocity and pressure fields. Due to the pressure drop between the cylinders there is a precondition to the formation of cavitation bubbles at the point of the lowest static pressure. To verify the assumption was made CFD model based on simplified physical model, through which cavitation was qualitatively and quantitatively assessed. In this paper the results of the numerical solution will be presented alongside with basic form of experimental device for physical generation of cavitation at high values of shear stress.\",\"PeriodicalId\":35968,\"journal\":{\"name\":\"Strojnicky Casopis\",\"volume\":\"66 1\",\"pages\":\"16 - 7\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/scjme-2016-0006\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Strojnicky Casopis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/scjme-2016-0006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Strojnicky Casopis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/scjme-2016-0006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 6

摘要

摘要本文描述了粘性液体在高剪切应力下的空化理论。为此,设计了两个圆柱壳同心施加的空间模型。在气缸之间狭窄的间隙内,液体的温度、密度和粘度是恒定的。剪切应力是由内气缸的旋转运动引起的,导致速度场和压力场的变化。由于气缸之间的压降,在最低静压点形成空化气泡是一个先决条件。为了验证这一假设,在简化物理模型的基础上建立了CFD模型,并通过该模型对空化进行了定性和定量评价。本文将给出数值解的结果以及在高剪切应力下物理产生空化的实验装置的基本形式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Research of Cavitation at High Shear Stress
Abstract The article describes the theory of cavitation at high values of shear stress in a viscous liquid. For this purpose, a spatial model of two cylindrical shells imposed concentrically was designed. In the narrow gap between the cylinders the temperature, density and viscosity of liquid is constant. Shear stress is induced by the rotary motion of the inner cylinder, resulting in a change of velocity and pressure fields. Due to the pressure drop between the cylinders there is a precondition to the formation of cavitation bubbles at the point of the lowest static pressure. To verify the assumption was made CFD model based on simplified physical model, through which cavitation was qualitatively and quantitatively assessed. In this paper the results of the numerical solution will be presented alongside with basic form of experimental device for physical generation of cavitation at high values of shear stress.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Strojnicky Casopis
Strojnicky Casopis Engineering-Mechanical Engineering
CiteScore
2.00
自引率
0.00%
发文量
33
审稿时长
14 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信