P. Procházka, V. Hönig, Michal Obergruber, P. Zeman
{"title":"捷克共和国氢燃料的能量分析","authors":"P. Procházka, V. Hönig, Michal Obergruber, P. Zeman","doi":"10.15159/AR.18.015","DOIUrl":null,"url":null,"abstract":"The conc s response to the first oil crisis. In the context of the hydrogen economy, it is important to calculate how much hydrogen would be needed to power all motor vehicles in the Czech Republic. This is main topics of this paper. To calculate the amount of hydrogen, we used two different methods. One is based on thermodynamic laws and the other on normal operating conditions. Both approaches yielded comparable results. It was found out that even with the use of all the electricity produced in the Czech Republic in 2016, we would not be able to cover the amount of energy that is required for production. It would cover only 75% resp. 76% depending on the calculation method used. Eventually, the Czech Republic could buy necessary amount of hydrogen and it would cost between 11 and 29 billion euros which is between 6% and 16% of GDP of the Czech Republic. In the calculations, authors found out that most fuel is burnt in the passenger cars. Therefore, we made a sensitivity analysis to find out how much our results would differ if fuel consumption changed. It turns out that with an increase in consumption of 1l per 100 km, hydrogen production coverage will decrease by about 4% (again with the use of all electricity produced in the Czech Republic).","PeriodicalId":7924,"journal":{"name":"Agronomy research","volume":"16 1","pages":"188-197"},"PeriodicalIF":0.0000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Energy analysis of hydrogen as a fuel in the Czech Republic\",\"authors\":\"P. Procházka, V. Hönig, Michal Obergruber, P. Zeman\",\"doi\":\"10.15159/AR.18.015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The conc s response to the first oil crisis. In the context of the hydrogen economy, it is important to calculate how much hydrogen would be needed to power all motor vehicles in the Czech Republic. This is main topics of this paper. To calculate the amount of hydrogen, we used two different methods. One is based on thermodynamic laws and the other on normal operating conditions. Both approaches yielded comparable results. It was found out that even with the use of all the electricity produced in the Czech Republic in 2016, we would not be able to cover the amount of energy that is required for production. It would cover only 75% resp. 76% depending on the calculation method used. Eventually, the Czech Republic could buy necessary amount of hydrogen and it would cost between 11 and 29 billion euros which is between 6% and 16% of GDP of the Czech Republic. In the calculations, authors found out that most fuel is burnt in the passenger cars. Therefore, we made a sensitivity analysis to find out how much our results would differ if fuel consumption changed. It turns out that with an increase in consumption of 1l per 100 km, hydrogen production coverage will decrease by about 4% (again with the use of all electricity produced in the Czech Republic).\",\"PeriodicalId\":7924,\"journal\":{\"name\":\"Agronomy research\",\"volume\":\"16 1\",\"pages\":\"188-197\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Agronomy research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15159/AR.18.015\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Agronomy research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15159/AR.18.015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
Energy analysis of hydrogen as a fuel in the Czech Republic
The conc s response to the first oil crisis. In the context of the hydrogen economy, it is important to calculate how much hydrogen would be needed to power all motor vehicles in the Czech Republic. This is main topics of this paper. To calculate the amount of hydrogen, we used two different methods. One is based on thermodynamic laws and the other on normal operating conditions. Both approaches yielded comparable results. It was found out that even with the use of all the electricity produced in the Czech Republic in 2016, we would not be able to cover the amount of energy that is required for production. It would cover only 75% resp. 76% depending on the calculation method used. Eventually, the Czech Republic could buy necessary amount of hydrogen and it would cost between 11 and 29 billion euros which is between 6% and 16% of GDP of the Czech Republic. In the calculations, authors found out that most fuel is burnt in the passenger cars. Therefore, we made a sensitivity analysis to find out how much our results would differ if fuel consumption changed. It turns out that with an increase in consumption of 1l per 100 km, hydrogen production coverage will decrease by about 4% (again with the use of all electricity produced in the Czech Republic).
Agronomy researchAgricultural and Biological Sciences-Agronomy and Crop Science
CiteScore
2.10
自引率
0.00%
发文量
0
审稿时长
7 weeks
期刊介绍:
Agronomy Research is a peer-reviewed international Journal intended for publication of broad-spectrum original articles, reviews and short communications on actual problems of modern biosystems engineering including crop and animal science, genetics, economics, farm- and production engineering, environmental aspects, agro-ecology, renewable energy and bioenergy etc. in the temperate regions of the world.