linear2号操作员仅限于没有阿基米德的格子间

Burhanudin Arif Nurnugroho, Supama Supama, A. Zulijanto
{"title":"linear2号操作员仅限于没有阿基米德的格子间","authors":"Burhanudin Arif Nurnugroho, Supama Supama, A. Zulijanto","doi":"10.14421/fourier.2019.82.43-50","DOIUrl":null,"url":null,"abstract":"Di dalam paper ini dikonstruksikan operator linear-2 terbatas dari X2 ke Y , dengan X  ruang bernorma-2 non-Archimedean dan  ruang bernorma non-Archimedean. Di dalam paper ini ditunjukan bahwa himpunan semua operator linear-2 terbatas dari X2 to Y , ditulis B(X2, Y) merupakan ruang bernorma non-Archimedean. Selanjutnya, ditunjukan bahwa B(X2, Y), apabila Y ruang Banach non-Archimedean. [In this paper we construct  bounded 2-linear operators from X2  to Y, where X is non-Archimedean 2-normed spaces and  is a non-Archimedean-normed space. We prove that the set of all bounded 2-linear operators from X2 to Y  , denoted by B(X2, Y) is a non-Archimedean normed spaces. Furthermore, we show that B(X2, Y) is a non-Archimedean Banach normed space, whenever Y is a non-Archimedean Banach space.]","PeriodicalId":55815,"journal":{"name":"Jurnal Fourier","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Operator Linear-2 Terbatas pada Ruang Bernorma-2 Non-Archimedean\",\"authors\":\"Burhanudin Arif Nurnugroho, Supama Supama, A. Zulijanto\",\"doi\":\"10.14421/fourier.2019.82.43-50\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Di dalam paper ini dikonstruksikan operator linear-2 terbatas dari X2 ke Y , dengan X  ruang bernorma-2 non-Archimedean dan  ruang bernorma non-Archimedean. Di dalam paper ini ditunjukan bahwa himpunan semua operator linear-2 terbatas dari X2 to Y , ditulis B(X2, Y) merupakan ruang bernorma non-Archimedean. Selanjutnya, ditunjukan bahwa B(X2, Y), apabila Y ruang Banach non-Archimedean. [In this paper we construct  bounded 2-linear operators from X2  to Y, where X is non-Archimedean 2-normed spaces and  is a non-Archimedean-normed space. We prove that the set of all bounded 2-linear operators from X2 to Y  , denoted by B(X2, Y) is a non-Archimedean normed spaces. Furthermore, we show that B(X2, Y) is a non-Archimedean Banach normed space, whenever Y is a non-Archimedean Banach space.]\",\"PeriodicalId\":55815,\"journal\":{\"name\":\"Jurnal Fourier\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jurnal Fourier\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14421/fourier.2019.82.43-50\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Fourier","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14421/fourier.2019.82.43-50","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文构造了一个从X2[UNK]到Y的线性-2有限算子,其中X[UNK]空间归一化为-2非阿基米德算子,[UNK]空归一化为非阿基米德算子。本文证明了从X2到Y的所有线性2算子的和,写为B(X2,Y)是一个非阿基米德标准空间。其次,它证明了B(X2,Y),当Y是非阿基米德-巴拿赫空间时。本文构造了从X2[UNK]到Y的[UNK]有界2-线性算子,其中X是非阿基米德2-赋范空间,[UNK]是非阿基米德赋范空间[UNK]是非阿基米德-巴拿赫赋范空间,当Y是非阿基米德巴拿赫空间时。]
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Operator Linear-2 Terbatas pada Ruang Bernorma-2 Non-Archimedean
Di dalam paper ini dikonstruksikan operator linear-2 terbatas dari X2 ke Y , dengan X  ruang bernorma-2 non-Archimedean dan  ruang bernorma non-Archimedean. Di dalam paper ini ditunjukan bahwa himpunan semua operator linear-2 terbatas dari X2 to Y , ditulis B(X2, Y) merupakan ruang bernorma non-Archimedean. Selanjutnya, ditunjukan bahwa B(X2, Y), apabila Y ruang Banach non-Archimedean. [In this paper we construct  bounded 2-linear operators from X2  to Y, where X is non-Archimedean 2-normed spaces and  is a non-Archimedean-normed space. We prove that the set of all bounded 2-linear operators from X2 to Y  , denoted by B(X2, Y) is a non-Archimedean normed spaces. Furthermore, we show that B(X2, Y) is a non-Archimedean Banach normed space, whenever Y is a non-Archimedean Banach space.]
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
24 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信