Burhanudin Arif Nurnugroho, Supama Supama, A. Zulijanto
{"title":"linear2号操作员仅限于没有阿基米德的格子间","authors":"Burhanudin Arif Nurnugroho, Supama Supama, A. Zulijanto","doi":"10.14421/fourier.2019.82.43-50","DOIUrl":null,"url":null,"abstract":"Di dalam paper ini dikonstruksikan operator linear-2 terbatas dari X2 ke Y , dengan X ruang bernorma-2 non-Archimedean dan ruang bernorma non-Archimedean. Di dalam paper ini ditunjukan bahwa himpunan semua operator linear-2 terbatas dari X2 to Y , ditulis B(X2, Y) merupakan ruang bernorma non-Archimedean. Selanjutnya, ditunjukan bahwa B(X2, Y), apabila Y ruang Banach non-Archimedean. [In this paper we construct bounded 2-linear operators from X2 to Y, where X is non-Archimedean 2-normed spaces and is a non-Archimedean-normed space. We prove that the set of all bounded 2-linear operators from X2 to Y , denoted by B(X2, Y) is a non-Archimedean normed spaces. Furthermore, we show that B(X2, Y) is a non-Archimedean Banach normed space, whenever Y is a non-Archimedean Banach space.]","PeriodicalId":55815,"journal":{"name":"Jurnal Fourier","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Operator Linear-2 Terbatas pada Ruang Bernorma-2 Non-Archimedean\",\"authors\":\"Burhanudin Arif Nurnugroho, Supama Supama, A. Zulijanto\",\"doi\":\"10.14421/fourier.2019.82.43-50\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Di dalam paper ini dikonstruksikan operator linear-2 terbatas dari X2 ke Y , dengan X ruang bernorma-2 non-Archimedean dan ruang bernorma non-Archimedean. Di dalam paper ini ditunjukan bahwa himpunan semua operator linear-2 terbatas dari X2 to Y , ditulis B(X2, Y) merupakan ruang bernorma non-Archimedean. Selanjutnya, ditunjukan bahwa B(X2, Y), apabila Y ruang Banach non-Archimedean. [In this paper we construct bounded 2-linear operators from X2 to Y, where X is non-Archimedean 2-normed spaces and is a non-Archimedean-normed space. We prove that the set of all bounded 2-linear operators from X2 to Y , denoted by B(X2, Y) is a non-Archimedean normed spaces. Furthermore, we show that B(X2, Y) is a non-Archimedean Banach normed space, whenever Y is a non-Archimedean Banach space.]\",\"PeriodicalId\":55815,\"journal\":{\"name\":\"Jurnal Fourier\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jurnal Fourier\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14421/fourier.2019.82.43-50\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Fourier","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14421/fourier.2019.82.43-50","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Operator Linear-2 Terbatas pada Ruang Bernorma-2 Non-Archimedean
Di dalam paper ini dikonstruksikan operator linear-2 terbatas dari X2 ke Y , dengan X ruang bernorma-2 non-Archimedean dan ruang bernorma non-Archimedean. Di dalam paper ini ditunjukan bahwa himpunan semua operator linear-2 terbatas dari X2 to Y , ditulis B(X2, Y) merupakan ruang bernorma non-Archimedean. Selanjutnya, ditunjukan bahwa B(X2, Y), apabila Y ruang Banach non-Archimedean. [In this paper we construct bounded 2-linear operators from X2 to Y, where X is non-Archimedean 2-normed spaces and is a non-Archimedean-normed space. We prove that the set of all bounded 2-linear operators from X2 to Y , denoted by B(X2, Y) is a non-Archimedean normed spaces. Furthermore, we show that B(X2, Y) is a non-Archimedean Banach normed space, whenever Y is a non-Archimedean Banach space.]