用迁移学习训练的卷积网络构建检测

IF 0.4 4区 社会学 Q4 GEOGRAPHY
S. Šanca, K. Oštir, Alen Mangafić
{"title":"用迁移学习训练的卷积网络构建检测","authors":"S. Šanca, K. Oštir, Alen Mangafić","doi":"10.15292/geodetski-vestnik.2021.04.559-593","DOIUrl":null,"url":null,"abstract":"Building footprint detection based on orthophotos can be used to update the building cadastre. In recent years deep learning methods using convolutional neural networks have been increasingly used around the world. We present an example of automatic building classification using our datasets made of colour near-infrared orthophotos (NIR-R-G) and colour orthophotos (R-G-B). Building detection using pretrained weights from two large scale datasets Microsoft Common Objects in Context (MS COCO) and ImageNet was performed and tested. We applied the Mask Region Convolutional Neural Network (Mask R-CNN) to detect the building footprints. The purpose of our research is to identify the applicability of pre-trained neural networks on the data of another colour space to build a classification model without re-learning.","PeriodicalId":44295,"journal":{"name":"Geodetski Vestnik","volume":"1 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Building detection with convolutional networks trained with transfer learning\",\"authors\":\"S. Šanca, K. Oštir, Alen Mangafić\",\"doi\":\"10.15292/geodetski-vestnik.2021.04.559-593\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Building footprint detection based on orthophotos can be used to update the building cadastre. In recent years deep learning methods using convolutional neural networks have been increasingly used around the world. We present an example of automatic building classification using our datasets made of colour near-infrared orthophotos (NIR-R-G) and colour orthophotos (R-G-B). Building detection using pretrained weights from two large scale datasets Microsoft Common Objects in Context (MS COCO) and ImageNet was performed and tested. We applied the Mask Region Convolutional Neural Network (Mask R-CNN) to detect the building footprints. The purpose of our research is to identify the applicability of pre-trained neural networks on the data of another colour space to build a classification model without re-learning.\",\"PeriodicalId\":44295,\"journal\":{\"name\":\"Geodetski Vestnik\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geodetski Vestnik\",\"FirstCategoryId\":\"90\",\"ListUrlMain\":\"https://doi.org/10.15292/geodetski-vestnik.2021.04.559-593\",\"RegionNum\":4,\"RegionCategory\":\"社会学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"GEOGRAPHY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geodetski Vestnik","FirstCategoryId":"90","ListUrlMain":"https://doi.org/10.15292/geodetski-vestnik.2021.04.559-593","RegionNum":4,"RegionCategory":"社会学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOGRAPHY","Score":null,"Total":0}
引用次数: 1

摘要

基于正射影像的建筑物足迹检测可用于建筑物地籍更新。近年来,使用卷积神经网络的深度学习方法在世界范围内得到了越来越多的应用。我们提出了一个使用彩色近红外正射影像(NIR-R-G)和彩色正射影像(R-G-B)组成的数据集进行自动建筑分类的例子。使用来自两个大型数据集Microsoft Common Objects in Context (MS COCO)和ImageNet的预训练权值进行建筑检测并进行了测试。我们应用掩模区域卷积神经网络(Mask R-CNN)来检测建筑物足迹。我们研究的目的是确定预训练的神经网络在另一个色彩空间数据上的适用性,以建立一个不需要重新学习的分类模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Building detection with convolutional networks trained with transfer learning
Building footprint detection based on orthophotos can be used to update the building cadastre. In recent years deep learning methods using convolutional neural networks have been increasingly used around the world. We present an example of automatic building classification using our datasets made of colour near-infrared orthophotos (NIR-R-G) and colour orthophotos (R-G-B). Building detection using pretrained weights from two large scale datasets Microsoft Common Objects in Context (MS COCO) and ImageNet was performed and tested. We applied the Mask Region Convolutional Neural Network (Mask R-CNN) to detect the building footprints. The purpose of our research is to identify the applicability of pre-trained neural networks on the data of another colour space to build a classification model without re-learning.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geodetski Vestnik
Geodetski Vestnik GEOGRAPHY-
CiteScore
1.00
自引率
33.30%
发文量
10
审稿时长
12 weeks
期刊介绍: Zveza geodetov Slovenije v skladu s svojim poslanstvom in s svojim statutom, izdaja znanstveno, strokovno in informativno glasilo Geodetski vestnik. Izhaja v nakladi 1200 izvodov. Objavlja znanstvene, strokovne in poljudno strokovne prispevke ter informacije. Revija je dostopna v večjem številu sekundarnih podatkovnih baz po svetu in mnogih knjižnicah. Od leta 2008 je vključena v Thomson Scientific bazo podatkov SCI. Cena izvoda revije je za nečlane 17 Evrov.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信