D. Caulton, Priya D. Gurav, A. Robertson, Kristen Pozsonyi, S. Murphy, D. Lyon
{"title":"利用乙烷与甲烷的比值识别二叠纪盆地的异常油罐排放","authors":"D. Caulton, Priya D. Gurav, A. Robertson, Kristen Pozsonyi, S. Murphy, D. Lyon","doi":"10.1525/elementa.2022.00121","DOIUrl":null,"url":null,"abstract":"There has been increasing interest in quantifying methane (CH4) emissions from a view toward mitigation. Accordingly, ground-based sampling of oil and gas production sites in the Permian Basin was carried out in January and October 2020. Molar ethane to methane ratios (EMRs) were quantified, which may be used to distinguish emissions from particular sources, such as produced gas and oil tank flashing. The geometric mean EMR for 100 observations was 18 (±2)%, while source specific EMRs showed that sites where emissions were attributed to a tank produced much higher EMRs averaging 47%. Sites with other noticeable sources such as compressors, pneumatics, and separators had lower and less variable EMRs. Tanks displayed distinct behavior with EMRs between 10% and 21% producing CH4 emissions >30× higher than tanks with EMRs >21%. This observation supports the hypothesis that high emission rate tank sources are often caused by separator malfunctions that leak produced gas through liquids storage tanks.","PeriodicalId":54279,"journal":{"name":"Elementa-Science of the Anthropocene","volume":"24 1","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Abnormal tank emissions in the Permian Basin identified using ethane to methane ratios\",\"authors\":\"D. Caulton, Priya D. Gurav, A. Robertson, Kristen Pozsonyi, S. Murphy, D. Lyon\",\"doi\":\"10.1525/elementa.2022.00121\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There has been increasing interest in quantifying methane (CH4) emissions from a view toward mitigation. Accordingly, ground-based sampling of oil and gas production sites in the Permian Basin was carried out in January and October 2020. Molar ethane to methane ratios (EMRs) were quantified, which may be used to distinguish emissions from particular sources, such as produced gas and oil tank flashing. The geometric mean EMR for 100 observations was 18 (±2)%, while source specific EMRs showed that sites where emissions were attributed to a tank produced much higher EMRs averaging 47%. Sites with other noticeable sources such as compressors, pneumatics, and separators had lower and less variable EMRs. Tanks displayed distinct behavior with EMRs between 10% and 21% producing CH4 emissions >30× higher than tanks with EMRs >21%. This observation supports the hypothesis that high emission rate tank sources are often caused by separator malfunctions that leak produced gas through liquids storage tanks.\",\"PeriodicalId\":54279,\"journal\":{\"name\":\"Elementa-Science of the Anthropocene\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Elementa-Science of the Anthropocene\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1525/elementa.2022.00121\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Elementa-Science of the Anthropocene","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1525/elementa.2022.00121","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Abnormal tank emissions in the Permian Basin identified using ethane to methane ratios
There has been increasing interest in quantifying methane (CH4) emissions from a view toward mitigation. Accordingly, ground-based sampling of oil and gas production sites in the Permian Basin was carried out in January and October 2020. Molar ethane to methane ratios (EMRs) were quantified, which may be used to distinguish emissions from particular sources, such as produced gas and oil tank flashing. The geometric mean EMR for 100 observations was 18 (±2)%, while source specific EMRs showed that sites where emissions were attributed to a tank produced much higher EMRs averaging 47%. Sites with other noticeable sources such as compressors, pneumatics, and separators had lower and less variable EMRs. Tanks displayed distinct behavior with EMRs between 10% and 21% producing CH4 emissions >30× higher than tanks with EMRs >21%. This observation supports the hypothesis that high emission rate tank sources are often caused by separator malfunctions that leak produced gas through liquids storage tanks.
期刊介绍:
A new open-access scientific journal, Elementa: Science of the Anthropocene publishes original research reporting on new knowledge of the Earth’s physical, chemical, and biological systems; interactions between human and natural systems; and steps that can be taken to mitigate and adapt to global change. Elementa reports on fundamental advancements in research organized initially into six knowledge domains, embracing the concept that basic knowledge can foster sustainable solutions for society. Elementa is published on an open-access, public-good basis—available freely and immediately to the world.