Vanessa Engelhardt, T. Perez, L. Donoso, T. Müller, A. Wiedensohler
{"title":"委内瑞拉加拉加斯大都市区的黑碳和颗粒物质量浓度:时间变化和贡献源的评估","authors":"Vanessa Engelhardt, T. Perez, L. Donoso, T. Müller, A. Wiedensohler","doi":"10.1525/elementa.2022.00024","DOIUrl":null,"url":null,"abstract":"Atmospheric aerosols play an important role in atmospheric processes and human health. Characterizing atmospheric aerosols and identifying their sources in large cities is relevant to propose site-specific air pollution mitigation strategies. In this study, we measured the mass concentration of atmospheric aerosols with an aerodynamic diameter smaller than 2.5 µm (PM2.5) in the city of Caracas (urban) and in a tropical montane cloud forest (suburban site, located in a mountainous area 11 km far from Caracas) between June 2018 and October 2019. We also measured equivalent black carbon (eBC) mass concentration in PM2.5 in Caracas during the same period. Our goal is to assess PM2.5 and eBC temporal variation and identify their major sources in the area. eBC showed a pronounced diurnal cycle in the urban site, mainly modulated by traffic circulation and the diurnal changes of the mixing layer height. In contrast, PM2.5 showed stable median values during the day with slight variations like that of eBC. In the forest site, PM2.5 values were higher in the afternoons due to the convective transport of aerosols from Caracas and other surrounding urban areas located in adjacent valleys. The annual median for eBC and PM2.5 was 1.6 and 9.2 µg m–3, respectively, in the urban site, while PM2.5 in the forest site was 6.6 µg m–3. To our knowledge, these are the first measurements of this type in the northernmost area of South America. eBC and PM2.5 sources identification during wet and dry seasons was obtained by percentiles of the conditional bivariate probability function (CBPF). CBPF showed seasonal variations of eBC and PM2.5 sources and that their contributions are higher during the dry season. Biomass burning events are a relevant contributing source of aerosols for both sites of measurements inferred by fire pixels from satellite data, the national fire department’s statistics data, and backward trajectories. Our results indicate that biomass burning might affect the atmosphere on a regional scale, contribute to regional warming, and have implications for local and regional air quality and, therefore, human health.","PeriodicalId":54279,"journal":{"name":"Elementa-Science of the Anthropocene","volume":"57 1","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Black carbon and particulate matter mass concentrations in the Metropolitan District of Caracas, Venezuela: An assessment of temporal variation and contributing sources\",\"authors\":\"Vanessa Engelhardt, T. Perez, L. Donoso, T. Müller, A. Wiedensohler\",\"doi\":\"10.1525/elementa.2022.00024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Atmospheric aerosols play an important role in atmospheric processes and human health. Characterizing atmospheric aerosols and identifying their sources in large cities is relevant to propose site-specific air pollution mitigation strategies. In this study, we measured the mass concentration of atmospheric aerosols with an aerodynamic diameter smaller than 2.5 µm (PM2.5) in the city of Caracas (urban) and in a tropical montane cloud forest (suburban site, located in a mountainous area 11 km far from Caracas) between June 2018 and October 2019. We also measured equivalent black carbon (eBC) mass concentration in PM2.5 in Caracas during the same period. Our goal is to assess PM2.5 and eBC temporal variation and identify their major sources in the area. eBC showed a pronounced diurnal cycle in the urban site, mainly modulated by traffic circulation and the diurnal changes of the mixing layer height. In contrast, PM2.5 showed stable median values during the day with slight variations like that of eBC. In the forest site, PM2.5 values were higher in the afternoons due to the convective transport of aerosols from Caracas and other surrounding urban areas located in adjacent valleys. The annual median for eBC and PM2.5 was 1.6 and 9.2 µg m–3, respectively, in the urban site, while PM2.5 in the forest site was 6.6 µg m–3. To our knowledge, these are the first measurements of this type in the northernmost area of South America. eBC and PM2.5 sources identification during wet and dry seasons was obtained by percentiles of the conditional bivariate probability function (CBPF). CBPF showed seasonal variations of eBC and PM2.5 sources and that their contributions are higher during the dry season. Biomass burning events are a relevant contributing source of aerosols for both sites of measurements inferred by fire pixels from satellite data, the national fire department’s statistics data, and backward trajectories. Our results indicate that biomass burning might affect the atmosphere on a regional scale, contribute to regional warming, and have implications for local and regional air quality and, therefore, human health.\",\"PeriodicalId\":54279,\"journal\":{\"name\":\"Elementa-Science of the Anthropocene\",\"volume\":\"57 1\",\"pages\":\"\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Elementa-Science of the Anthropocene\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1525/elementa.2022.00024\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Elementa-Science of the Anthropocene","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1525/elementa.2022.00024","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Black carbon and particulate matter mass concentrations in the Metropolitan District of Caracas, Venezuela: An assessment of temporal variation and contributing sources
Atmospheric aerosols play an important role in atmospheric processes and human health. Characterizing atmospheric aerosols and identifying their sources in large cities is relevant to propose site-specific air pollution mitigation strategies. In this study, we measured the mass concentration of atmospheric aerosols with an aerodynamic diameter smaller than 2.5 µm (PM2.5) in the city of Caracas (urban) and in a tropical montane cloud forest (suburban site, located in a mountainous area 11 km far from Caracas) between June 2018 and October 2019. We also measured equivalent black carbon (eBC) mass concentration in PM2.5 in Caracas during the same period. Our goal is to assess PM2.5 and eBC temporal variation and identify their major sources in the area. eBC showed a pronounced diurnal cycle in the urban site, mainly modulated by traffic circulation and the diurnal changes of the mixing layer height. In contrast, PM2.5 showed stable median values during the day with slight variations like that of eBC. In the forest site, PM2.5 values were higher in the afternoons due to the convective transport of aerosols from Caracas and other surrounding urban areas located in adjacent valleys. The annual median for eBC and PM2.5 was 1.6 and 9.2 µg m–3, respectively, in the urban site, while PM2.5 in the forest site was 6.6 µg m–3. To our knowledge, these are the first measurements of this type in the northernmost area of South America. eBC and PM2.5 sources identification during wet and dry seasons was obtained by percentiles of the conditional bivariate probability function (CBPF). CBPF showed seasonal variations of eBC and PM2.5 sources and that their contributions are higher during the dry season. Biomass burning events are a relevant contributing source of aerosols for both sites of measurements inferred by fire pixels from satellite data, the national fire department’s statistics data, and backward trajectories. Our results indicate that biomass burning might affect the atmosphere on a regional scale, contribute to regional warming, and have implications for local and regional air quality and, therefore, human health.
期刊介绍:
A new open-access scientific journal, Elementa: Science of the Anthropocene publishes original research reporting on new knowledge of the Earth’s physical, chemical, and biological systems; interactions between human and natural systems; and steps that can be taken to mitigate and adapt to global change. Elementa reports on fundamental advancements in research organized initially into six knowledge domains, embracing the concept that basic knowledge can foster sustainable solutions for society. Elementa is published on an open-access, public-good basis—available freely and immediately to the world.