K. Hajny, C. Floerchinger, I. Lopez-Coto, J. Pitt, C. Gately, K. Gurney, L. Hutyra, T. Jayarathne, R. Kaeser, G. Roest, M. Sargent, B. Stirm, J. Tomlin, A. J. Turner, P. Shepson, S. Wofsy
{"title":"估算城市二氧化碳排放的空间显式清单尺度方法","authors":"K. Hajny, C. Floerchinger, I. Lopez-Coto, J. Pitt, C. Gately, K. Gurney, L. Hutyra, T. Jayarathne, R. Kaeser, G. Roest, M. Sargent, B. Stirm, J. Tomlin, A. J. Turner, P. Shepson, S. Wofsy","doi":"10.1525/elementa.2021.00121","DOIUrl":null,"url":null,"abstract":"Appropriate techniques to quantify greenhouse gas emission reductions in cities over time are necessary to monitor the progress of these efforts and effectively inform continuing mitigation. We introduce a scaling factor (SF) method that combines aircraft measurements and dispersion modeling to estimate urban emissions and apply it to 9 nongrowing season research aircraft flights around New York City (NYC) in 2018–2020. This SF approach uses a weighting function to focus on an area of interest while still accounting for upwind emissions. We estimate carbon dioxide (CO2) emissions from NYC and the Greater New York Area (GNA) and compare to nested inversion analyses of the same data. The average calculated CO2 emission rates for NYC and the GNA, representative of daytime emissions for the flights, were (49 ± 16) kmol/s and (144 ± 44) kmol/s, respectively (uncertainties reported as ±1σ variability across the 9 flights). These emissions are within ∼15% of an inversion analysis and agree well with inventory estimates. By using an ensemble, we also investigate the variability introduced by several sources and find that day-to-day variability dominates the overall variability. This work investigates and demonstrates the capability of an SF method to quantify emissions specific to particular areas of interest.","PeriodicalId":54279,"journal":{"name":"Elementa-Science of the Anthropocene","volume":"1 1","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A spatially explicit inventory scaling approach to estimate urban CO2 emissions\",\"authors\":\"K. Hajny, C. Floerchinger, I. Lopez-Coto, J. Pitt, C. Gately, K. Gurney, L. Hutyra, T. Jayarathne, R. Kaeser, G. Roest, M. Sargent, B. Stirm, J. Tomlin, A. J. Turner, P. Shepson, S. Wofsy\",\"doi\":\"10.1525/elementa.2021.00121\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Appropriate techniques to quantify greenhouse gas emission reductions in cities over time are necessary to monitor the progress of these efforts and effectively inform continuing mitigation. We introduce a scaling factor (SF) method that combines aircraft measurements and dispersion modeling to estimate urban emissions and apply it to 9 nongrowing season research aircraft flights around New York City (NYC) in 2018–2020. This SF approach uses a weighting function to focus on an area of interest while still accounting for upwind emissions. We estimate carbon dioxide (CO2) emissions from NYC and the Greater New York Area (GNA) and compare to nested inversion analyses of the same data. The average calculated CO2 emission rates for NYC and the GNA, representative of daytime emissions for the flights, were (49 ± 16) kmol/s and (144 ± 44) kmol/s, respectively (uncertainties reported as ±1σ variability across the 9 flights). These emissions are within ∼15% of an inversion analysis and agree well with inventory estimates. By using an ensemble, we also investigate the variability introduced by several sources and find that day-to-day variability dominates the overall variability. This work investigates and demonstrates the capability of an SF method to quantify emissions specific to particular areas of interest.\",\"PeriodicalId\":54279,\"journal\":{\"name\":\"Elementa-Science of the Anthropocene\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Elementa-Science of the Anthropocene\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1525/elementa.2021.00121\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Elementa-Science of the Anthropocene","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1525/elementa.2021.00121","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
A spatially explicit inventory scaling approach to estimate urban CO2 emissions
Appropriate techniques to quantify greenhouse gas emission reductions in cities over time are necessary to monitor the progress of these efforts and effectively inform continuing mitigation. We introduce a scaling factor (SF) method that combines aircraft measurements and dispersion modeling to estimate urban emissions and apply it to 9 nongrowing season research aircraft flights around New York City (NYC) in 2018–2020. This SF approach uses a weighting function to focus on an area of interest while still accounting for upwind emissions. We estimate carbon dioxide (CO2) emissions from NYC and the Greater New York Area (GNA) and compare to nested inversion analyses of the same data. The average calculated CO2 emission rates for NYC and the GNA, representative of daytime emissions for the flights, were (49 ± 16) kmol/s and (144 ± 44) kmol/s, respectively (uncertainties reported as ±1σ variability across the 9 flights). These emissions are within ∼15% of an inversion analysis and agree well with inventory estimates. By using an ensemble, we also investigate the variability introduced by several sources and find that day-to-day variability dominates the overall variability. This work investigates and demonstrates the capability of an SF method to quantify emissions specific to particular areas of interest.
期刊介绍:
A new open-access scientific journal, Elementa: Science of the Anthropocene publishes original research reporting on new knowledge of the Earth’s physical, chemical, and biological systems; interactions between human and natural systems; and steps that can be taken to mitigate and adapt to global change. Elementa reports on fundamental advancements in research organized initially into six knowledge domains, embracing the concept that basic knowledge can foster sustainable solutions for society. Elementa is published on an open-access, public-good basis—available freely and immediately to the world.