微生物群落对干旱的反应取决于作物

IF 4.7 3区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES
Jennifer M. Jones, Emma Lauren Boehm, K. Kahmark, J. Lau, Sarah Evans
{"title":"微生物群落对干旱的反应取决于作物","authors":"Jennifer M. Jones, Emma Lauren Boehm, K. Kahmark, J. Lau, Sarah Evans","doi":"10.1525/elementa.2021.00110","DOIUrl":null,"url":null,"abstract":"Growing season drought can be devastating to crop yields. Soil microbial communities have the potential to buffer yield loss under drought through increasing plant drought tolerance and soil water retention. Microbial inoculation on agricultural fields has been shown to increase plant growth, but few studies have examined the impact of microbial inoculation on plant and soil microbial drought tolerance. We conducted a rainout shelter experiment and subsequent greenhouse experiment to explore 3 objectives. First, we evaluated the performance of a large rainout shelter design for studying drought in agricultural fields. Second, we tested how crop (corn vs. soybean) and microbial inoculation alter the response of soil microbial composition, diversity, and biomass to drought. Third, we tested whether field inoculation treatments and drought exposure altered microbial communities in ways that promote plant drought tolerance in future generations. In our field experiment, the effects of drought on soil bacterial composition depended on crop type, while drought decreased bacterial diversity in corn plots and drought decreased microbial biomass carbon in soybean plots. Microbial inoculation did not alter overall microbial community composition, plant growth, or drought tolerance despite our efforts to address common barriers to inoculation success. Still, a history of inoculation affected growth of future plant generations in the greenhouse. Our study demonstrates the importance of plant species in shaping microbial community responses to drought and the importance of legacy effects of microbial inoculation.","PeriodicalId":54279,"journal":{"name":"Elementa-Science of the Anthropocene","volume":"1 1","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Microbial community response to drought depends on crop\",\"authors\":\"Jennifer M. Jones, Emma Lauren Boehm, K. Kahmark, J. Lau, Sarah Evans\",\"doi\":\"10.1525/elementa.2021.00110\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Growing season drought can be devastating to crop yields. Soil microbial communities have the potential to buffer yield loss under drought through increasing plant drought tolerance and soil water retention. Microbial inoculation on agricultural fields has been shown to increase plant growth, but few studies have examined the impact of microbial inoculation on plant and soil microbial drought tolerance. We conducted a rainout shelter experiment and subsequent greenhouse experiment to explore 3 objectives. First, we evaluated the performance of a large rainout shelter design for studying drought in agricultural fields. Second, we tested how crop (corn vs. soybean) and microbial inoculation alter the response of soil microbial composition, diversity, and biomass to drought. Third, we tested whether field inoculation treatments and drought exposure altered microbial communities in ways that promote plant drought tolerance in future generations. In our field experiment, the effects of drought on soil bacterial composition depended on crop type, while drought decreased bacterial diversity in corn plots and drought decreased microbial biomass carbon in soybean plots. Microbial inoculation did not alter overall microbial community composition, plant growth, or drought tolerance despite our efforts to address common barriers to inoculation success. Still, a history of inoculation affected growth of future plant generations in the greenhouse. Our study demonstrates the importance of plant species in shaping microbial community responses to drought and the importance of legacy effects of microbial inoculation.\",\"PeriodicalId\":54279,\"journal\":{\"name\":\"Elementa-Science of the Anthropocene\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Elementa-Science of the Anthropocene\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1525/elementa.2021.00110\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Elementa-Science of the Anthropocene","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1525/elementa.2021.00110","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 2

摘要

生长季节的干旱对农作物产量是毁灭性的。土壤微生物群落具有通过提高植物耐旱性和土壤保水能力来缓冲干旱条件下产量损失的潜力。农田微生物接种对植物生长有促进作用,但很少有研究考察微生物接种对植物和土壤微生物抗旱性的影响。我们进行了一个雨棚实验和随后的温室实验来探索3个目标。首先,我们评估了用于研究农田干旱的大型雨棚设计的性能。其次,我们测试了作物(玉米与大豆)和微生物接种如何改变土壤微生物组成、多样性和生物量对干旱的反应。第三,我们测试了田间接种处理和干旱暴露是否以促进后代植物抗旱性的方式改变了微生物群落。在我们的田间试验中,干旱对土壤细菌组成的影响取决于作物类型,干旱降低了玉米地块的细菌多样性,干旱降低了大豆地块的微生物生物量碳。尽管我们努力解决了接种成功的常见障碍,但微生物接种并未改变总体微生物群落组成、植物生长或耐旱性。尽管如此,接种的历史影响了温室中未来植物世代的生长。我们的研究证明了植物物种在塑造微生物群落对干旱的反应中的重要性,以及微生物接种的遗留效应的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Microbial community response to drought depends on crop
Growing season drought can be devastating to crop yields. Soil microbial communities have the potential to buffer yield loss under drought through increasing plant drought tolerance and soil water retention. Microbial inoculation on agricultural fields has been shown to increase plant growth, but few studies have examined the impact of microbial inoculation on plant and soil microbial drought tolerance. We conducted a rainout shelter experiment and subsequent greenhouse experiment to explore 3 objectives. First, we evaluated the performance of a large rainout shelter design for studying drought in agricultural fields. Second, we tested how crop (corn vs. soybean) and microbial inoculation alter the response of soil microbial composition, diversity, and biomass to drought. Third, we tested whether field inoculation treatments and drought exposure altered microbial communities in ways that promote plant drought tolerance in future generations. In our field experiment, the effects of drought on soil bacterial composition depended on crop type, while drought decreased bacterial diversity in corn plots and drought decreased microbial biomass carbon in soybean plots. Microbial inoculation did not alter overall microbial community composition, plant growth, or drought tolerance despite our efforts to address common barriers to inoculation success. Still, a history of inoculation affected growth of future plant generations in the greenhouse. Our study demonstrates the importance of plant species in shaping microbial community responses to drought and the importance of legacy effects of microbial inoculation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Elementa-Science of the Anthropocene
Elementa-Science of the Anthropocene Earth and Planetary Sciences-Atmospheric Science
CiteScore
6.90
自引率
5.10%
发文量
65
审稿时长
16 weeks
期刊介绍: A new open-access scientific journal, Elementa: Science of the Anthropocene publishes original research reporting on new knowledge of the Earth’s physical, chemical, and biological systems; interactions between human and natural systems; and steps that can be taken to mitigate and adapt to global change. Elementa reports on fundamental advancements in research organized initially into six knowledge domains, embracing the concept that basic knowledge can foster sustainable solutions for society. Elementa is published on an open-access, public-good basis—available freely and immediately to the world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信