Mark Argento, F. Henderson, R. Lewis, D. Mallyon, D. Risk, N. Nickerson
{"title":"土壤表面通量测量是评估土壤和季节间逸散气体迁移的可靠手段","authors":"Mark Argento, F. Henderson, R. Lewis, D. Mallyon, D. Risk, N. Nickerson","doi":"10.1525/elementa.2021.00010","DOIUrl":null,"url":null,"abstract":"As oil and gas wells age and the number of wells drilled increases to meet demand, we may see more instances of fugitive soil gas migration (GM) and associated methane (CH4) emissions. Due to the immense spatiotemporal variability of soils and uncertainty in measurement practice, the detection and quantification of GM emissions is a challenge. Two common measurement techniques include the shallow in-soil gas concentration approach and soil surface flux measurements using flux chambers. In this numerical modeling study, both methods were compared to determine how soil texture, environmental conditions (water content, temperature), and CH4 leak rates into the soil profile influenced in-soil CH4 concentration and surface CH4 flux rates. We observed that in-soil CH4 concentration was strongly controlled by soil texture and environmental conditions, whereas surface CH4 flux rates were far less sensitive to those same parameters. Flux measurements were more useful for determining severity of the CH4 leak into the soil and allowed us to differentiate between leak and nonleak scenarios in soils with biological CH4 production which could complicate a GM assessment. We also evaluated field measurements of carbon dioxide from an enhanced oil recovery site to demonstrate how seasonal conditions can influence concentrations of trace gases in shallow soil. Based on our model results and supplemental field measurements, we propose that flux chamber measurements present a more reliable tool to assess the incidence and severity of fugitive GM.","PeriodicalId":54279,"journal":{"name":"Elementa-Science of the Anthropocene","volume":"1 1","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Soil surface flux measurements are a reliable means for assessing fugitive gas migration across soils and seasons\",\"authors\":\"Mark Argento, F. Henderson, R. Lewis, D. Mallyon, D. Risk, N. Nickerson\",\"doi\":\"10.1525/elementa.2021.00010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As oil and gas wells age and the number of wells drilled increases to meet demand, we may see more instances of fugitive soil gas migration (GM) and associated methane (CH4) emissions. Due to the immense spatiotemporal variability of soils and uncertainty in measurement practice, the detection and quantification of GM emissions is a challenge. Two common measurement techniques include the shallow in-soil gas concentration approach and soil surface flux measurements using flux chambers. In this numerical modeling study, both methods were compared to determine how soil texture, environmental conditions (water content, temperature), and CH4 leak rates into the soil profile influenced in-soil CH4 concentration and surface CH4 flux rates. We observed that in-soil CH4 concentration was strongly controlled by soil texture and environmental conditions, whereas surface CH4 flux rates were far less sensitive to those same parameters. Flux measurements were more useful for determining severity of the CH4 leak into the soil and allowed us to differentiate between leak and nonleak scenarios in soils with biological CH4 production which could complicate a GM assessment. We also evaluated field measurements of carbon dioxide from an enhanced oil recovery site to demonstrate how seasonal conditions can influence concentrations of trace gases in shallow soil. Based on our model results and supplemental field measurements, we propose that flux chamber measurements present a more reliable tool to assess the incidence and severity of fugitive GM.\",\"PeriodicalId\":54279,\"journal\":{\"name\":\"Elementa-Science of the Anthropocene\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Elementa-Science of the Anthropocene\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1525/elementa.2021.00010\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Elementa-Science of the Anthropocene","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1525/elementa.2021.00010","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Soil surface flux measurements are a reliable means for assessing fugitive gas migration across soils and seasons
As oil and gas wells age and the number of wells drilled increases to meet demand, we may see more instances of fugitive soil gas migration (GM) and associated methane (CH4) emissions. Due to the immense spatiotemporal variability of soils and uncertainty in measurement practice, the detection and quantification of GM emissions is a challenge. Two common measurement techniques include the shallow in-soil gas concentration approach and soil surface flux measurements using flux chambers. In this numerical modeling study, both methods were compared to determine how soil texture, environmental conditions (water content, temperature), and CH4 leak rates into the soil profile influenced in-soil CH4 concentration and surface CH4 flux rates. We observed that in-soil CH4 concentration was strongly controlled by soil texture and environmental conditions, whereas surface CH4 flux rates were far less sensitive to those same parameters. Flux measurements were more useful for determining severity of the CH4 leak into the soil and allowed us to differentiate between leak and nonleak scenarios in soils with biological CH4 production which could complicate a GM assessment. We also evaluated field measurements of carbon dioxide from an enhanced oil recovery site to demonstrate how seasonal conditions can influence concentrations of trace gases in shallow soil. Based on our model results and supplemental field measurements, we propose that flux chamber measurements present a more reliable tool to assess the incidence and severity of fugitive GM.
期刊介绍:
A new open-access scientific journal, Elementa: Science of the Anthropocene publishes original research reporting on new knowledge of the Earth’s physical, chemical, and biological systems; interactions between human and natural systems; and steps that can be taken to mitigate and adapt to global change. Elementa reports on fundamental advancements in research organized initially into six knowledge domains, embracing the concept that basic knowledge can foster sustainable solutions for society. Elementa is published on an open-access, public-good basis—available freely and immediately to the world.