具有序列相关不可观测量的动态模型的一个简单估计

Q3 Mathematics
Yingyao Hu, M. Shum, W. Tan, Ruli Xiao
{"title":"具有序列相关不可观测量的动态模型的一个简单估计","authors":"Yingyao Hu, M. Shum, W. Tan, Ruli Xiao","doi":"10.1515/jem-2015-0011","DOIUrl":null,"url":null,"abstract":"Abstract We present a method for estimating Markov dynamic models with unobserved state variables which can be serially correlated over time. We focus on the case where all the model variables have discrete support. Our estimator is simple to compute because it is noniterative, and involves only elementary matrix manipulations. Our estimation method is nonparametric, in that no parametric assumptions on the distributions of the unobserved state variables or the laws of motions of the state variables are required. Monte Carlo simulations show that the estimator performs well in practice, and we illustrate its use with a dataset of doctors’ prescription of pharmaceutical drugs.","PeriodicalId":36727,"journal":{"name":"Journal of Econometric Methods","volume":"6 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2015-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/jem-2015-0011","citationCount":"14","resultStr":"{\"title\":\"A Simple Estimator for Dynamic Models with Serially Correlated Unobservables\",\"authors\":\"Yingyao Hu, M. Shum, W. Tan, Ruli Xiao\",\"doi\":\"10.1515/jem-2015-0011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We present a method for estimating Markov dynamic models with unobserved state variables which can be serially correlated over time. We focus on the case where all the model variables have discrete support. Our estimator is simple to compute because it is noniterative, and involves only elementary matrix manipulations. Our estimation method is nonparametric, in that no parametric assumptions on the distributions of the unobserved state variables or the laws of motions of the state variables are required. Monte Carlo simulations show that the estimator performs well in practice, and we illustrate its use with a dataset of doctors’ prescription of pharmaceutical drugs.\",\"PeriodicalId\":36727,\"journal\":{\"name\":\"Journal of Econometric Methods\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/jem-2015-0011\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Econometric Methods\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/jem-2015-0011\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Econometric Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/jem-2015-0011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 14

摘要

摘要提出了一种估计具有不可观测状态变量的马尔可夫动态模型的方法,该状态变量可以随时间序列相关。我们关注的是所有模型变量都有离散支持的情况。我们的估计器很容易计算,因为它是非迭代的,并且只涉及初等矩阵操作。我们的估计方法是非参数的,即不需要对未观测状态变量的分布或状态变量的运动规律进行参数假设。蒙特卡罗模拟表明,该估计器在实践中具有良好的性能,并以医生处方药物数据集为例说明了它的使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Simple Estimator for Dynamic Models with Serially Correlated Unobservables
Abstract We present a method for estimating Markov dynamic models with unobserved state variables which can be serially correlated over time. We focus on the case where all the model variables have discrete support. Our estimator is simple to compute because it is noniterative, and involves only elementary matrix manipulations. Our estimation method is nonparametric, in that no parametric assumptions on the distributions of the unobserved state variables or the laws of motions of the state variables are required. Monte Carlo simulations show that the estimator performs well in practice, and we illustrate its use with a dataset of doctors’ prescription of pharmaceutical drugs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Econometric Methods
Journal of Econometric Methods Economics, Econometrics and Finance-Economics and Econometrics
CiteScore
2.20
自引率
0.00%
发文量
7
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信