{"title":"行业动态估计方法的蒙特卡罗证据","authors":"Kazufumi Yamana","doi":"10.1515/jem-2018-0010","DOIUrl":null,"url":null,"abstract":"Abstract This study presents a structural estimation method for nonlinear stochastic dynamic models of heterogeneous firms. I perform a Monte Carlo experiment to evaluate the performance of the estimators for the AR(1) dynamic panel data subject to sample selection without exogenous regressors. The results suggest a strong need to correct the sample selection and that the proposed structural estimation method works well. These results are important for practical situations where the assumptions of the standard sample selection correction methods are not satisfied.","PeriodicalId":36727,"journal":{"name":"Journal of Econometric Methods","volume":"16 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2016-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/jem-2018-0010","citationCount":"0","resultStr":"{\"title\":\"Monte Carlo Evidence on the Estimation Method for Industry Dynamics\",\"authors\":\"Kazufumi Yamana\",\"doi\":\"10.1515/jem-2018-0010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This study presents a structural estimation method for nonlinear stochastic dynamic models of heterogeneous firms. I perform a Monte Carlo experiment to evaluate the performance of the estimators for the AR(1) dynamic panel data subject to sample selection without exogenous regressors. The results suggest a strong need to correct the sample selection and that the proposed structural estimation method works well. These results are important for practical situations where the assumptions of the standard sample selection correction methods are not satisfied.\",\"PeriodicalId\":36727,\"journal\":{\"name\":\"Journal of Econometric Methods\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/jem-2018-0010\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Econometric Methods\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/jem-2018-0010\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Econometric Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/jem-2018-0010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
Monte Carlo Evidence on the Estimation Method for Industry Dynamics
Abstract This study presents a structural estimation method for nonlinear stochastic dynamic models of heterogeneous firms. I perform a Monte Carlo experiment to evaluate the performance of the estimators for the AR(1) dynamic panel data subject to sample selection without exogenous regressors. The results suggest a strong need to correct the sample selection and that the proposed structural estimation method works well. These results are important for practical situations where the assumptions of the standard sample selection correction methods are not satisfied.