非对称拉普拉斯回归:最大似然、最大熵和分位数回归

Q3 Mathematics
Anil K. Bera, A. Galvao, Gabriel Montes-Rojas, Sung Y. Park
{"title":"非对称拉普拉斯回归:最大似然、最大熵和分位数回归","authors":"Anil K. Bera, A. Galvao, Gabriel Montes-Rojas, Sung Y. Park","doi":"10.1515/jem-2014-0018","DOIUrl":null,"url":null,"abstract":"Abstract This paper studies the connections among the asymmetric Laplace probability density (ALPD), maximum likelihood, maximum entropy and quantile regression. We show that the maximum likelihood problem is equivalent to the solution of a maximum entropy problem where we impose moment constraints given by the joint consideration of the mean and median. The ALPD score functions lead to joint estimating equations that delivers estimates for the slope parameters together with a representative quantile. Asymptotic properties of the estimator are derived under the framework of the quasi maximum likelihood estimation. With a limited simulation experiment we evaluate the finite sample properties of our estimator. Finally, we illustrate the use of the estimator with an application to the US wage data to evaluate the effect of training on wages.","PeriodicalId":36727,"journal":{"name":"Journal of Econometric Methods","volume":"5 1","pages":"101 - 79"},"PeriodicalIF":0.0000,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/jem-2014-0018","citationCount":"48","resultStr":"{\"title\":\"Asymmetric Laplace Regression: Maximum Likelihood, Maximum Entropy and Quantile Regression\",\"authors\":\"Anil K. Bera, A. Galvao, Gabriel Montes-Rojas, Sung Y. Park\",\"doi\":\"10.1515/jem-2014-0018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This paper studies the connections among the asymmetric Laplace probability density (ALPD), maximum likelihood, maximum entropy and quantile regression. We show that the maximum likelihood problem is equivalent to the solution of a maximum entropy problem where we impose moment constraints given by the joint consideration of the mean and median. The ALPD score functions lead to joint estimating equations that delivers estimates for the slope parameters together with a representative quantile. Asymptotic properties of the estimator are derived under the framework of the quasi maximum likelihood estimation. With a limited simulation experiment we evaluate the finite sample properties of our estimator. Finally, we illustrate the use of the estimator with an application to the US wage data to evaluate the effect of training on wages.\",\"PeriodicalId\":36727,\"journal\":{\"name\":\"Journal of Econometric Methods\",\"volume\":\"5 1\",\"pages\":\"101 - 79\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/jem-2014-0018\",\"citationCount\":\"48\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Econometric Methods\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/jem-2014-0018\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Econometric Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/jem-2014-0018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 48

摘要

摘要本文研究了非对称拉普拉斯概率密度(ALPD)、最大似然、最大熵和分位数回归之间的联系。我们证明了最大似然问题等价于最大熵问题的解,其中我们施加了由平均值和中位数联合考虑给出的力矩约束。ALPD得分函数导致联合估计方程,该方程提供斜率参数的估计以及代表性分位数。在拟极大似然估计的框架下,得到了估计量的渐近性质。通过有限的模拟实验,我们评估了估计器的有限样本性质。最后,我们用美国工资数据来说明估计器的使用,以评估培训对工资的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Asymmetric Laplace Regression: Maximum Likelihood, Maximum Entropy and Quantile Regression
Abstract This paper studies the connections among the asymmetric Laplace probability density (ALPD), maximum likelihood, maximum entropy and quantile regression. We show that the maximum likelihood problem is equivalent to the solution of a maximum entropy problem where we impose moment constraints given by the joint consideration of the mean and median. The ALPD score functions lead to joint estimating equations that delivers estimates for the slope parameters together with a representative quantile. Asymptotic properties of the estimator are derived under the framework of the quasi maximum likelihood estimation. With a limited simulation experiment we evaluate the finite sample properties of our estimator. Finally, we illustrate the use of the estimator with an application to the US wage data to evaluate the effect of training on wages.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Econometric Methods
Journal of Econometric Methods Economics, Econometrics and Finance-Economics and Econometrics
CiteScore
2.20
自引率
0.00%
发文量
7
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信