{"title":"错误指定的离散选择模型和Huber-White标准误差","authors":"G. Michael","doi":"10.1515/JEM-2016-0002","DOIUrl":null,"url":null,"abstract":"I analyze properties of misspecified discrete choice models and the efficacy of Huber-White (sometimes called ‘robust’) standard errors. The Huber-White correction provides asymptotically correct standard errors for a consistent estimator from a misspecified model. There is little justification for using Huber-White standard errors in discrete choice models since misspecification usually leads to inconsistent estimators. I derive necessary and sufficient conditions for consistency of the maximum likelihood estimator of any potentially misspecified random utility model (e.g. conditional logit). I also derive (easily satisfied) sufficient conditions for consistent estimation of the sign of the data generating parameter. It follows the researcher can consistently test the sign (or nullity) of the parameter from the data generating process using the (possibly) misspecified conditional logit. I investigate small sample properties of the Huber-White estimator via a simulation study and find the correction provides little to no improvement for inferences.","PeriodicalId":36727,"journal":{"name":"Journal of Econometric Methods","volume":"8 1","pages":"1-17"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/JEM-2016-0002","citationCount":"1","resultStr":"{\"title\":\"Misspecified Discrete Choice Models and Huber-White Standard Errors\",\"authors\":\"G. Michael\",\"doi\":\"10.1515/JEM-2016-0002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"I analyze properties of misspecified discrete choice models and the efficacy of Huber-White (sometimes called ‘robust’) standard errors. The Huber-White correction provides asymptotically correct standard errors for a consistent estimator from a misspecified model. There is little justification for using Huber-White standard errors in discrete choice models since misspecification usually leads to inconsistent estimators. I derive necessary and sufficient conditions for consistency of the maximum likelihood estimator of any potentially misspecified random utility model (e.g. conditional logit). I also derive (easily satisfied) sufficient conditions for consistent estimation of the sign of the data generating parameter. It follows the researcher can consistently test the sign (or nullity) of the parameter from the data generating process using the (possibly) misspecified conditional logit. I investigate small sample properties of the Huber-White estimator via a simulation study and find the correction provides little to no improvement for inferences.\",\"PeriodicalId\":36727,\"journal\":{\"name\":\"Journal of Econometric Methods\",\"volume\":\"8 1\",\"pages\":\"1-17\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/JEM-2016-0002\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Econometric Methods\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/JEM-2016-0002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Econometric Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/JEM-2016-0002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
Misspecified Discrete Choice Models and Huber-White Standard Errors
I analyze properties of misspecified discrete choice models and the efficacy of Huber-White (sometimes called ‘robust’) standard errors. The Huber-White correction provides asymptotically correct standard errors for a consistent estimator from a misspecified model. There is little justification for using Huber-White standard errors in discrete choice models since misspecification usually leads to inconsistent estimators. I derive necessary and sufficient conditions for consistency of the maximum likelihood estimator of any potentially misspecified random utility model (e.g. conditional logit). I also derive (easily satisfied) sufficient conditions for consistent estimation of the sign of the data generating parameter. It follows the researcher can consistently test the sign (or nullity) of the parameter from the data generating process using the (possibly) misspecified conditional logit. I investigate small sample properties of the Huber-White estimator via a simulation study and find the correction provides little to no improvement for inferences.