copula - graph估计量的回归模型

Q3 Mathematics
Simon M. S. Lo, R. Wilke
{"title":"copula - graph估计量的回归模型","authors":"Simon M. S. Lo, R. Wilke","doi":"10.1515/JEM-2012-0016","DOIUrl":null,"url":null,"abstract":"Abstract We suggest a pragmatic extension of the non-parametric copula-graphic estimator to a depending competing risks model with covariates. Our model is an attractive empirical approach for practitioners in many disciplines as it does not require knowledge of the marginal distributions. Although non-observable and only set-identifiable in most applications, classical duration models typically impose ad-hoc assumptions on their functional forms. Instead of directly estimating these distributions, we suggest a plug-in regression framework which utilises an estimator for the observable cumulative incidence curves which specification can be visually inspected. We perform simulations and estimate an unemployment duration model to demonstrate the advantages of our model compared to classical duration models such as the Cox proportional hazard model.","PeriodicalId":36727,"journal":{"name":"Journal of Econometric Methods","volume":"3 1","pages":"21 - 46"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/JEM-2012-0016","citationCount":"12","resultStr":"{\"title\":\"A Regression Model for the Copula-Graphic Estimator\",\"authors\":\"Simon M. S. Lo, R. Wilke\",\"doi\":\"10.1515/JEM-2012-0016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We suggest a pragmatic extension of the non-parametric copula-graphic estimator to a depending competing risks model with covariates. Our model is an attractive empirical approach for practitioners in many disciplines as it does not require knowledge of the marginal distributions. Although non-observable and only set-identifiable in most applications, classical duration models typically impose ad-hoc assumptions on their functional forms. Instead of directly estimating these distributions, we suggest a plug-in regression framework which utilises an estimator for the observable cumulative incidence curves which specification can be visually inspected. We perform simulations and estimate an unemployment duration model to demonstrate the advantages of our model compared to classical duration models such as the Cox proportional hazard model.\",\"PeriodicalId\":36727,\"journal\":{\"name\":\"Journal of Econometric Methods\",\"volume\":\"3 1\",\"pages\":\"21 - 46\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/JEM-2012-0016\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Econometric Methods\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/JEM-2012-0016\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Econometric Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/JEM-2012-0016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 12

摘要

摘要将非参数共轭图估计推广到具有协变量的依赖竞争风险模型。我们的模型对于许多学科的实践者来说是一种有吸引力的经验方法,因为它不需要边际分布的知识。尽管在大多数应用程序中是不可观察的,并且只能进行集合识别,但经典的持续时间模型通常会对其功能形式施加特定的假设。而不是直接估计这些分布,我们建议一个插件回归框架,它利用一个可观察到的累积发生率曲线的估计器,其规格可以直观地检查。我们进行了模拟并估计了失业持续时间模型,以证明与Cox比例风险模型等经典持续时间模型相比,我们的模型具有优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Regression Model for the Copula-Graphic Estimator
Abstract We suggest a pragmatic extension of the non-parametric copula-graphic estimator to a depending competing risks model with covariates. Our model is an attractive empirical approach for practitioners in many disciplines as it does not require knowledge of the marginal distributions. Although non-observable and only set-identifiable in most applications, classical duration models typically impose ad-hoc assumptions on their functional forms. Instead of directly estimating these distributions, we suggest a plug-in regression framework which utilises an estimator for the observable cumulative incidence curves which specification can be visually inspected. We perform simulations and estimate an unemployment duration model to demonstrate the advantages of our model compared to classical duration models such as the Cox proportional hazard model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Econometric Methods
Journal of Econometric Methods Economics, Econometrics and Finance-Economics and Econometrics
CiteScore
2.20
自引率
0.00%
发文量
7
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信