随机正则图上的最大独立集

IF 4.9 1区 数学 Q1 MATHEMATICS
Jian Ding, A. Sly, Nike Sun
{"title":"随机正则图上的最大独立集","authors":"Jian Ding, A. Sly, Nike Sun","doi":"10.14288/1.0044424","DOIUrl":null,"url":null,"abstract":"We determine the asymptotics of the independence number of the random d-regular graph for all $${d\\geq d_0}$$d≥d0. It is highly concentrated, with constant-order fluctuations around $${n\\alpha_*-c_*\\log n}$$nα∗-c∗logn for explicit constants $${\\alpha_*(d)}$$α∗(d) and $${c_*(d)}$$c∗(d). Our proof rigorously confirms the one-step replica symmetry breaking heuristics for this problem, and we believe the techniques will be more broadly applicable to the study of other combinatorial properties of random graphs.","PeriodicalId":50895,"journal":{"name":"Acta Mathematica","volume":null,"pages":null},"PeriodicalIF":4.9000,"publicationDate":"2013-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"60","resultStr":"{\"title\":\"Maximum independent sets on random regular graphs\",\"authors\":\"Jian Ding, A. Sly, Nike Sun\",\"doi\":\"10.14288/1.0044424\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We determine the asymptotics of the independence number of the random d-regular graph for all $${d\\\\geq d_0}$$d≥d0. It is highly concentrated, with constant-order fluctuations around $${n\\\\alpha_*-c_*\\\\log n}$$nα∗-c∗logn for explicit constants $${\\\\alpha_*(d)}$$α∗(d) and $${c_*(d)}$$c∗(d). Our proof rigorously confirms the one-step replica symmetry breaking heuristics for this problem, and we believe the techniques will be more broadly applicable to the study of other combinatorial properties of random graphs.\",\"PeriodicalId\":50895,\"journal\":{\"name\":\"Acta Mathematica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2013-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"60\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Mathematica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.14288/1.0044424\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mathematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.14288/1.0044424","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 60

摘要

我们确定了所有$${d\geq d_0}$$ d≥d0的随机d正则图的独立数的渐近性。它是高度集中的,对于显式常数$${\alpha_*(d)}$$ α∗(d)和$${c_*(d)}$$ c∗(d),在$${n\alpha_*-c_*\log n}$$ nα∗-c∗logn附近具有常阶波动。我们的证明严格地证实了该问题的一步复制对称破断启发式,我们相信该技术将更广泛地适用于随机图的其他组合性质的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Maximum independent sets on random regular graphs
We determine the asymptotics of the independence number of the random d-regular graph for all $${d\geq d_0}$$d≥d0. It is highly concentrated, with constant-order fluctuations around $${n\alpha_*-c_*\log n}$$nα∗-c∗logn for explicit constants $${\alpha_*(d)}$$α∗(d) and $${c_*(d)}$$c∗(d). Our proof rigorously confirms the one-step replica symmetry breaking heuristics for this problem, and we believe the techniques will be more broadly applicable to the study of other combinatorial properties of random graphs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acta Mathematica
Acta Mathematica 数学-数学
CiteScore
6.00
自引率
2.70%
发文量
6
审稿时长
>12 weeks
期刊介绍: Publishes original research papers of the highest quality in all fields of mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信