动态结构联结模型

IF 1.3 Q2 STATISTICS & PROBABILITY
W. Härdle, Ostap Okhrin, Yarema Okhrin
{"title":"动态结构联结模型","authors":"W. Härdle, Ostap Okhrin, Yarema Okhrin","doi":"10.1524/strm.2013.2004","DOIUrl":null,"url":null,"abstract":"Abstract There is an increasing demand for models of multivariate time-series with time-varying and non-Gaussian dependencies. The available models suffer from the curse of dimensionality or from restrictive assumptions on the parameters and distributions. A promising class of models is that of hierarchical Archimedean copulae (HAC), which allows for non-exchangeable and non-Gaussian dependency structures with a small number of parameters. In this paper we develop a novel adaptive estimation technique of the parameters and of the structure of HAC for time-series. The approach relies on a local change-point detection procedure and a locally constant HAC approximation. Typical applications are in the financial area but also recently in the spatial analysis of weather parameters. We analyse the time varying dependency structure of stock indices and exchange rates. Both examples reveal periods with constant and turmoil dependencies. The economic significance of the suggested modelling is evaluated using the Value-at-Risk of a portfolio.","PeriodicalId":44159,"journal":{"name":"Statistics & Risk Modeling","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1524/strm.2013.2004","citationCount":"15","resultStr":"{\"title\":\"Dynamic structured copula models\",\"authors\":\"W. Härdle, Ostap Okhrin, Yarema Okhrin\",\"doi\":\"10.1524/strm.2013.2004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract There is an increasing demand for models of multivariate time-series with time-varying and non-Gaussian dependencies. The available models suffer from the curse of dimensionality or from restrictive assumptions on the parameters and distributions. A promising class of models is that of hierarchical Archimedean copulae (HAC), which allows for non-exchangeable and non-Gaussian dependency structures with a small number of parameters. In this paper we develop a novel adaptive estimation technique of the parameters and of the structure of HAC for time-series. The approach relies on a local change-point detection procedure and a locally constant HAC approximation. Typical applications are in the financial area but also recently in the spatial analysis of weather parameters. We analyse the time varying dependency structure of stock indices and exchange rates. Both examples reveal periods with constant and turmoil dependencies. The economic significance of the suggested modelling is evaluated using the Value-at-Risk of a portfolio.\",\"PeriodicalId\":44159,\"journal\":{\"name\":\"Statistics & Risk Modeling\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2013-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1524/strm.2013.2004\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistics & Risk Modeling\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1524/strm.2013.2004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics & Risk Modeling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1524/strm.2013.2004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 15

摘要

摘要对具有时变非高斯依赖关系的多变量时间序列模型的需求越来越大。可用的模型受到维度的诅咒或对参数和分布的限制性假设的影响。一类很有前途的模型是分层阿基米德copulae (HAC)模型,它允许具有少量参数的非交换和非高斯依赖结构。本文提出了一种新的时间序列HAC参数和结构的自适应估计技术。该方法依赖于局部变化点检测过程和局部常数HAC近似。典型的应用是在金融领域,但最近也在天气参数的空间分析。我们分析了股票指数和汇率的时变依赖结构。这两个例子都揭示了持续和动荡依赖关系的时期。使用投资组合的风险价值来评估所建议模型的经济意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dynamic structured copula models
Abstract There is an increasing demand for models of multivariate time-series with time-varying and non-Gaussian dependencies. The available models suffer from the curse of dimensionality or from restrictive assumptions on the parameters and distributions. A promising class of models is that of hierarchical Archimedean copulae (HAC), which allows for non-exchangeable and non-Gaussian dependency structures with a small number of parameters. In this paper we develop a novel adaptive estimation technique of the parameters and of the structure of HAC for time-series. The approach relies on a local change-point detection procedure and a locally constant HAC approximation. Typical applications are in the financial area but also recently in the spatial analysis of weather parameters. We analyse the time varying dependency structure of stock indices and exchange rates. Both examples reveal periods with constant and turmoil dependencies. The economic significance of the suggested modelling is evaluated using the Value-at-Risk of a portfolio.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Statistics & Risk Modeling
Statistics & Risk Modeling STATISTICS & PROBABILITY-
CiteScore
1.80
自引率
6.70%
发文量
6
期刊介绍: Statistics & Risk Modeling (STRM) aims at covering modern methods of statistics and probabilistic modeling, and their applications to risk management in finance, insurance and related areas. The journal also welcomes articles related to nonparametric statistical methods and stochastic processes. Papers on innovative applications of statistical modeling and inference in risk management are also encouraged. Topics Statistical analysis for models in finance and insurance Credit-, market- and operational risk models Models for systemic risk Risk management Nonparametric statistical inference Statistical analysis of stochastic processes Stochastics in finance and insurance Decision making under uncertainty.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信