关于最优风险分配问题

IF 1.3 Q2 STATISTICS & PROBABILITY
Christian Burgert, L. Rüschendorf
{"title":"关于最优风险分配问题","authors":"Christian Burgert, L. Rüschendorf","doi":"10.1524/stnd.2006.24.1.153","DOIUrl":null,"url":null,"abstract":"SUMMARY The optimal risk allocation problem or equivalently the problem of risk sharing is the problem to allocate a risk in an optimal way to n traders endowed with risk measures ϱ1, …, ϱn. This problem has a long history in mathematical economics and insurance. In the first part of the paper we review some mathematical tools and discuss their applications to various problems on risk measures related to the allocation problem like to monotonicity properties of optimal allocations, to optimal investment problems or to an appropriate definition of the conditional value at risk. We then consider the risk allocation problem for convex risk measures ϱi. In general the optimal risk allocation problem is well defined only under an equilibrium condition. This condition can be characterized by the existence of a common scenario measure. We formulate ameaningful modification of the optimal risk allocation problem also formarkets without assuming the equilibrium condition and characterize optimal solutions. The basic idea is to restrict the class of admissible allocations in a proper way.","PeriodicalId":44159,"journal":{"name":"Statistics & Risk Modeling","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2006-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1524/stnd.2006.24.1.153","citationCount":"9","resultStr":"{\"title\":\"On the optimal risk allocation problem\",\"authors\":\"Christian Burgert, L. Rüschendorf\",\"doi\":\"10.1524/stnd.2006.24.1.153\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SUMMARY The optimal risk allocation problem or equivalently the problem of risk sharing is the problem to allocate a risk in an optimal way to n traders endowed with risk measures ϱ1, …, ϱn. This problem has a long history in mathematical economics and insurance. In the first part of the paper we review some mathematical tools and discuss their applications to various problems on risk measures related to the allocation problem like to monotonicity properties of optimal allocations, to optimal investment problems or to an appropriate definition of the conditional value at risk. We then consider the risk allocation problem for convex risk measures ϱi. In general the optimal risk allocation problem is well defined only under an equilibrium condition. This condition can be characterized by the existence of a common scenario measure. We formulate ameaningful modification of the optimal risk allocation problem also formarkets without assuming the equilibrium condition and characterize optimal solutions. The basic idea is to restrict the class of admissible allocations in a proper way.\",\"PeriodicalId\":44159,\"journal\":{\"name\":\"Statistics & Risk Modeling\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2006-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1524/stnd.2006.24.1.153\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistics & Risk Modeling\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1524/stnd.2006.24.1.153\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics & Risk Modeling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1524/stnd.2006.24.1.153","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 9

摘要

最优风险分配问题或风险分担问题是将风险以最优方式分配给n个具有风险度量ϱ1,…,ϱn的交易者的问题。这一问题在数理经济学和保险学界由来已久。在本文的第一部分中,我们回顾了一些数学工具,并讨论了它们在与分配问题相关的各种风险度量问题中的应用,如最优分配的单调性,最优投资问题或风险条件值的适当定义。然后我们考虑凸风险度量ϱi的风险分配问题。一般来说,最优风险分配问题只有在均衡条件下才有很好的定义。这种情况可以通过存在公共场景度量来表征。在不假设均衡条件的情况下,对市场的最优风险分配问题进行了有意义的修正,并给出了最优解的特征。基本思想是以适当的方式限制可接受的分配的类别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the optimal risk allocation problem
SUMMARY The optimal risk allocation problem or equivalently the problem of risk sharing is the problem to allocate a risk in an optimal way to n traders endowed with risk measures ϱ1, …, ϱn. This problem has a long history in mathematical economics and insurance. In the first part of the paper we review some mathematical tools and discuss their applications to various problems on risk measures related to the allocation problem like to monotonicity properties of optimal allocations, to optimal investment problems or to an appropriate definition of the conditional value at risk. We then consider the risk allocation problem for convex risk measures ϱi. In general the optimal risk allocation problem is well defined only under an equilibrium condition. This condition can be characterized by the existence of a common scenario measure. We formulate ameaningful modification of the optimal risk allocation problem also formarkets without assuming the equilibrium condition and characterize optimal solutions. The basic idea is to restrict the class of admissible allocations in a proper way.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Statistics & Risk Modeling
Statistics & Risk Modeling STATISTICS & PROBABILITY-
CiteScore
1.80
自引率
6.70%
发文量
6
期刊介绍: Statistics & Risk Modeling (STRM) aims at covering modern methods of statistics and probabilistic modeling, and their applications to risk management in finance, insurance and related areas. The journal also welcomes articles related to nonparametric statistical methods and stochastic processes. Papers on innovative applications of statistical modeling and inference in risk management are also encouraged. Topics Statistical analysis for models in finance and insurance Credit-, market- and operational risk models Models for systemic risk Risk management Nonparametric statistical inference Statistical analysis of stochastic processes Stochastics in finance and insurance Decision making under uncertainty.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信