投资组合向量的律不变凸风险测度

IF 1.3 Q2 STATISTICS & PROBABILITY
L. Rüschendorf
{"title":"投资组合向量的律不变凸风险测度","authors":"L. Rüschendorf","doi":"10.1524/stnd.2006.24.1.97","DOIUrl":null,"url":null,"abstract":"SUMMARY The class of all lawinvariant, convex risk measures for portfolio vectors is characterized. The building blocks of this class are shown to be formed by the maximal correlation risk measures. We further introduce some classes of multivariate distortion risk measures and relate them to multivariate quantile functionals and to an extension of the average value at risk measure.","PeriodicalId":44159,"journal":{"name":"Statistics & Risk Modeling","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2006-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1524/stnd.2006.24.1.97","citationCount":"2","resultStr":"{\"title\":\"Law invariant convex risk measures for portfolio vectors\",\"authors\":\"L. Rüschendorf\",\"doi\":\"10.1524/stnd.2006.24.1.97\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SUMMARY The class of all lawinvariant, convex risk measures for portfolio vectors is characterized. The building blocks of this class are shown to be formed by the maximal correlation risk measures. We further introduce some classes of multivariate distortion risk measures and relate them to multivariate quantile functionals and to an extension of the average value at risk measure.\",\"PeriodicalId\":44159,\"journal\":{\"name\":\"Statistics & Risk Modeling\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2006-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1524/stnd.2006.24.1.97\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistics & Risk Modeling\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1524/stnd.2006.24.1.97\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics & Risk Modeling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1524/stnd.2006.24.1.97","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 2

摘要

对投资组合向量的所有不变凸风险度量进行了刻画。该类的构建块由最大相关风险度量组成。我们进一步介绍了几类多变量失真风险度量,并将它们与多变量分位数函数和风险度量平均值的扩展联系起来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Law invariant convex risk measures for portfolio vectors
SUMMARY The class of all lawinvariant, convex risk measures for portfolio vectors is characterized. The building blocks of this class are shown to be formed by the maximal correlation risk measures. We further introduce some classes of multivariate distortion risk measures and relate them to multivariate quantile functionals and to an extension of the average value at risk measure.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Statistics & Risk Modeling
Statistics & Risk Modeling STATISTICS & PROBABILITY-
CiteScore
1.80
自引率
6.70%
发文量
6
期刊介绍: Statistics & Risk Modeling (STRM) aims at covering modern methods of statistics and probabilistic modeling, and their applications to risk management in finance, insurance and related areas. The journal also welcomes articles related to nonparametric statistical methods and stochastic processes. Papers on innovative applications of statistical modeling and inference in risk management are also encouraged. Topics Statistical analysis for models in finance and insurance Credit-, market- and operational risk models Models for systemic risk Risk management Nonparametric statistical inference Statistical analysis of stochastic processes Stochastics in finance and insurance Decision making under uncertainty.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信