{"title":"加权Carleson条件的定量方法","authors":"I. Rivera-Ríos","doi":"10.1515/conop-2017-0006","DOIUrl":null,"url":null,"abstract":"Abstract Quantitative versions of weighted estimates obtained by F. Ruiz and J.L. Torrea [30, 31] for the operator are obtained. As a consequence, some sufficient conditions for the boundedness of Min the two weight setting in the spirit of the results obtained by C. Pérez and E. Rela [26] and very recently by M. Lacey and S. Spencer [17] for the Hardy-Littlewood maximal operator are derived. As a byproduct some new quantitative estimates for the Poisson integral are obtained.","PeriodicalId":53800,"journal":{"name":"Concrete Operators","volume":null,"pages":null},"PeriodicalIF":0.3000,"publicationDate":"2016-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/conop-2017-0006","citationCount":"3","resultStr":"{\"title\":\"A quantitative approach to weighted Carleson condition\",\"authors\":\"I. Rivera-Ríos\",\"doi\":\"10.1515/conop-2017-0006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Quantitative versions of weighted estimates obtained by F. Ruiz and J.L. Torrea [30, 31] for the operator are obtained. As a consequence, some sufficient conditions for the boundedness of Min the two weight setting in the spirit of the results obtained by C. Pérez and E. Rela [26] and very recently by M. Lacey and S. Spencer [17] for the Hardy-Littlewood maximal operator are derived. As a byproduct some new quantitative estimates for the Poisson integral are obtained.\",\"PeriodicalId\":53800,\"journal\":{\"name\":\"Concrete Operators\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2016-02-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/conop-2017-0006\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Concrete Operators\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/conop-2017-0006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Concrete Operators","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/conop-2017-0006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
A quantitative approach to weighted Carleson condition
Abstract Quantitative versions of weighted estimates obtained by F. Ruiz and J.L. Torrea [30, 31] for the operator are obtained. As a consequence, some sufficient conditions for the boundedness of Min the two weight setting in the spirit of the results obtained by C. Pérez and E. Rela [26] and very recently by M. Lacey and S. Spencer [17] for the Hardy-Littlewood maximal operator are derived. As a byproduct some new quantitative estimates for the Poisson integral are obtained.