加权Carleson条件的定量方法

IF 0.3 Q4 MATHEMATICS
I. Rivera-Ríos
{"title":"加权Carleson条件的定量方法","authors":"I. Rivera-Ríos","doi":"10.1515/conop-2017-0006","DOIUrl":null,"url":null,"abstract":"Abstract Quantitative versions of weighted estimates obtained by F. Ruiz and J.L. Torrea [30, 31] for the operator are obtained. As a consequence, some sufficient conditions for the boundedness of Min the two weight setting in the spirit of the results obtained by C. Pérez and E. Rela [26] and very recently by M. Lacey and S. Spencer [17] for the Hardy-Littlewood maximal operator are derived. As a byproduct some new quantitative estimates for the Poisson integral are obtained.","PeriodicalId":53800,"journal":{"name":"Concrete Operators","volume":"4 1","pages":"58 - 75"},"PeriodicalIF":0.3000,"publicationDate":"2016-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/conop-2017-0006","citationCount":"3","resultStr":"{\"title\":\"A quantitative approach to weighted Carleson condition\",\"authors\":\"I. Rivera-Ríos\",\"doi\":\"10.1515/conop-2017-0006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Quantitative versions of weighted estimates obtained by F. Ruiz and J.L. Torrea [30, 31] for the operator are obtained. As a consequence, some sufficient conditions for the boundedness of Min the two weight setting in the spirit of the results obtained by C. Pérez and E. Rela [26] and very recently by M. Lacey and S. Spencer [17] for the Hardy-Littlewood maximal operator are derived. As a byproduct some new quantitative estimates for the Poisson integral are obtained.\",\"PeriodicalId\":53800,\"journal\":{\"name\":\"Concrete Operators\",\"volume\":\"4 1\",\"pages\":\"58 - 75\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2016-02-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/conop-2017-0006\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Concrete Operators\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/conop-2017-0006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Concrete Operators","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/conop-2017-0006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

摘要

摘要本文给出了F. Ruiz和J.L. Torrea[30,31]对算子的加权估计的定量版本。因此,在C. psamurez和E. Rela[26]以及最近M. Lacey和S. Spencer[17]关于Hardy-Littlewood极大算子的结果的精神上,导出了两个权值设置Min有界的一些充分条件。作为副产物,得到了泊松积分的一些新的定量估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A quantitative approach to weighted Carleson condition
Abstract Quantitative versions of weighted estimates obtained by F. Ruiz and J.L. Torrea [30, 31] for the operator are obtained. As a consequence, some sufficient conditions for the boundedness of Min the two weight setting in the spirit of the results obtained by C. Pérez and E. Rela [26] and very recently by M. Lacey and S. Spencer [17] for the Hardy-Littlewood maximal operator are derived. As a byproduct some new quantitative estimates for the Poisson integral are obtained.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Concrete Operators
Concrete Operators MATHEMATICS-
CiteScore
1.00
自引率
16.70%
发文量
10
审稿时长
22 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信