{"title":"一类带算子的矩阵元解集研究","authors":"A. Osipov","doi":"10.1515/conop-2016-0010","DOIUrl":null,"url":null,"abstract":"Abstract For operators generated by a certain class of infinite three-diagonal matrices with matrix elements we establish a characterization of the resolvent set in terms of polynomial solutions of the underlying second order finite-difference equations. This enables us to describe some asymptotic behavior of the corresponding systems of vector orthogonal polynomials on the resolvent set. We also find that the operators generated by infinite Jacobi matrices have the largest resolvent set in this class.","PeriodicalId":53800,"journal":{"name":"Concrete Operators","volume":null,"pages":null},"PeriodicalIF":0.3000,"publicationDate":"2016-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/conop-2016-0010","citationCount":"5","resultStr":"{\"title\":\"A study of resolvent set for a class of band operators with matrix elements\",\"authors\":\"A. Osipov\",\"doi\":\"10.1515/conop-2016-0010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract For operators generated by a certain class of infinite three-diagonal matrices with matrix elements we establish a characterization of the resolvent set in terms of polynomial solutions of the underlying second order finite-difference equations. This enables us to describe some asymptotic behavior of the corresponding systems of vector orthogonal polynomials on the resolvent set. We also find that the operators generated by infinite Jacobi matrices have the largest resolvent set in this class.\",\"PeriodicalId\":53800,\"journal\":{\"name\":\"Concrete Operators\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2016-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/conop-2016-0010\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Concrete Operators\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/conop-2016-0010\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Concrete Operators","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/conop-2016-0010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
A study of resolvent set for a class of band operators with matrix elements
Abstract For operators generated by a certain class of infinite three-diagonal matrices with matrix elements we establish a characterization of the resolvent set in terms of polynomial solutions of the underlying second order finite-difference equations. This enables us to describe some asymptotic behavior of the corresponding systems of vector orthogonal polynomials on the resolvent set. We also find that the operators generated by infinite Jacobi matrices have the largest resolvent set in this class.