半平面Hilbert Hardy空间上的可逆和正规复合算子

IF 0.3 Q4 MATHEMATICS
Valentin Matache
{"title":"半平面Hilbert Hardy空间上的可逆和正规复合算子","authors":"Valentin Matache","doi":"10.1515/conop-2016-0009","DOIUrl":null,"url":null,"abstract":"Abstract Operators on function spaces of form Cɸf = f ∘ ɸ, where ɸ is a fixed map are called composition operators with symbol ɸ. We study such operators acting on the Hilbert Hardy space over the right half-plane and characterize the situations when they are invertible, Fredholm, unitary, and Hermitian. We determine the normal composition operators with inner, respectively with Möbius symbol. In select cases, we calculate their spectra, essential spectra, and numerical ranges.","PeriodicalId":53800,"journal":{"name":"Concrete Operators","volume":null,"pages":null},"PeriodicalIF":0.3000,"publicationDate":"2016-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/conop-2016-0009","citationCount":"13","resultStr":"{\"title\":\"Invertible and normal composition operators on the Hilbert Hardy space of a half–plane\",\"authors\":\"Valentin Matache\",\"doi\":\"10.1515/conop-2016-0009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Operators on function spaces of form Cɸf = f ∘ ɸ, where ɸ is a fixed map are called composition operators with symbol ɸ. We study such operators acting on the Hilbert Hardy space over the right half-plane and characterize the situations when they are invertible, Fredholm, unitary, and Hermitian. We determine the normal composition operators with inner, respectively with Möbius symbol. In select cases, we calculate their spectra, essential spectra, and numerical ranges.\",\"PeriodicalId\":53800,\"journal\":{\"name\":\"Concrete Operators\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2016-01-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/conop-2016-0009\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Concrete Operators\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/conop-2016-0009\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Concrete Operators","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/conop-2016-0009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 13

摘要

形式为C h f = f°h的函数空间上的算子,其中h是一个固定映射,称为带符号h的复合算子。我们研究了作用于右半平面上的Hilbert Hardy空间上的这类算子,并描述了它们可逆、Fredholm、酉和厄米的情形。我们用inner和Möbius符号分别确定普通复合运算符。在选定的情况下,我们计算它们的光谱、基本光谱和数值范围。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Invertible and normal composition operators on the Hilbert Hardy space of a half–plane
Abstract Operators on function spaces of form Cɸf = f ∘ ɸ, where ɸ is a fixed map are called composition operators with symbol ɸ. We study such operators acting on the Hilbert Hardy space over the right half-plane and characterize the situations when they are invertible, Fredholm, unitary, and Hermitian. We determine the normal composition operators with inner, respectively with Möbius symbol. In select cases, we calculate their spectra, essential spectra, and numerical ranges.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Concrete Operators
Concrete Operators MATHEMATICS-
CiteScore
1.00
自引率
16.70%
发文量
10
审稿时长
22 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信