向量值全纯函数与调和函数

IF 0.3 Q4 MATHEMATICS
W. Arendt
{"title":"向量值全纯函数与调和函数","authors":"W. Arendt","doi":"10.1515/conop-2016-0007","DOIUrl":null,"url":null,"abstract":"Abstract Holomorphic and harmonic functions with values in a Banach space are investigated. Following an approach given in a joint article with Nikolski [4] it is shown that for bounded functions with values in a Banach space it suffices that the composition with functionals in a separating subspace of the dual space be holomorphic to deduce holomorphy. Another result is Vitali’s convergence theorem for holomorphic functions. The main novelty in the article is to prove analogous results for harmonic functions with values in a Banach space.","PeriodicalId":53800,"journal":{"name":"Concrete Operators","volume":"3 1","pages":"68 - 76"},"PeriodicalIF":0.3000,"publicationDate":"2016-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/conop-2016-0007","citationCount":"10","resultStr":"{\"title\":\"Vector-valued holomorphic and harmonic functions\",\"authors\":\"W. Arendt\",\"doi\":\"10.1515/conop-2016-0007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Holomorphic and harmonic functions with values in a Banach space are investigated. Following an approach given in a joint article with Nikolski [4] it is shown that for bounded functions with values in a Banach space it suffices that the composition with functionals in a separating subspace of the dual space be holomorphic to deduce holomorphy. Another result is Vitali’s convergence theorem for holomorphic functions. The main novelty in the article is to prove analogous results for harmonic functions with values in a Banach space.\",\"PeriodicalId\":53800,\"journal\":{\"name\":\"Concrete Operators\",\"volume\":\"3 1\",\"pages\":\"68 - 76\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2016-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/conop-2016-0007\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Concrete Operators\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/conop-2016-0007\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Concrete Operators","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/conop-2016-0007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 10

摘要

研究了Banach空间中带值的全纯函数和调和函数。根据与Nikolski[4]的联合文章给出的方法,证明了对于在Banach空间中有值的有界函数,在对偶空间的分离子空间中与泛函的复合是全纯的就足以推导出全纯。另一个结果是全纯函数的Vitali收敛定理。本文的主要新颖之处在于证明了巴拿赫空间中带值调和函数的类似结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Vector-valued holomorphic and harmonic functions
Abstract Holomorphic and harmonic functions with values in a Banach space are investigated. Following an approach given in a joint article with Nikolski [4] it is shown that for bounded functions with values in a Banach space it suffices that the composition with functionals in a separating subspace of the dual space be holomorphic to deduce holomorphy. Another result is Vitali’s convergence theorem for holomorphic functions. The main novelty in the article is to prove analogous results for harmonic functions with values in a Banach space.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Concrete Operators
Concrete Operators MATHEMATICS-
CiteScore
1.00
自引率
16.70%
发文量
10
审稿时长
22 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信