关于Calderón-Zygmund算子的熵颠簸

IF 0.3 Q4 MATHEMATICS
M. Lacey, Scott Spencer
{"title":"关于Calderón-Zygmund算子的熵颠簸","authors":"M. Lacey, Scott Spencer","doi":"10.1515/conop-2015-0003","DOIUrl":null,"url":null,"abstract":"Abstract We study twoweight inequalities in the recent innovative language of ‘entropy’ due to Treil-Volberg. The inequalities are extended to Lp, for 1 < p ≠ 2 < ∞, with new short proofs. A result proved is as follows. Let ɛ be a monotonic increasing function on (1,∞) which satisfy Let σ and w be two weights on ℝd. If this supremum is finite, for a choice of 1 < p < ∞, then any Calderón-Zygmund operator T satisfies the bound ||Tof||Lp(w) ≲ ||f|| Lp(o).","PeriodicalId":53800,"journal":{"name":"Concrete Operators","volume":"2 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2015-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/conop-2015-0003","citationCount":"16","resultStr":"{\"title\":\"On Entropy Bumps for Calderón-Zygmund Operators\",\"authors\":\"M. Lacey, Scott Spencer\",\"doi\":\"10.1515/conop-2015-0003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We study twoweight inequalities in the recent innovative language of ‘entropy’ due to Treil-Volberg. The inequalities are extended to Lp, for 1 < p ≠ 2 < ∞, with new short proofs. A result proved is as follows. Let ɛ be a monotonic increasing function on (1,∞) which satisfy Let σ and w be two weights on ℝd. If this supremum is finite, for a choice of 1 < p < ∞, then any Calderón-Zygmund operator T satisfies the bound ||Tof||Lp(w) ≲ ||f|| Lp(o).\",\"PeriodicalId\":53800,\"journal\":{\"name\":\"Concrete Operators\",\"volume\":\"2 1\",\"pages\":\"\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2015-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/conop-2015-0003\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Concrete Operators\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/conop-2015-0003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Concrete Operators","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/conop-2015-0003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 16

摘要

摘要:我们研究了Treil-Volberg最近提出的“熵”这一创新语言中的两个权不等式。对1 < p≠2 <∞的不等式推广到Lp,并给出了新的简短证明。证明结果如下:设(1,∞)上的一个单调递增函数,满足σ和w是两个权值。如果这个上极值是有限的,对于1 < p <∞的选择,则任意Calderón-Zygmund算子T满足||Tof||Lp(w) > ||f|| Lp(o)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Entropy Bumps for Calderón-Zygmund Operators
Abstract We study twoweight inequalities in the recent innovative language of ‘entropy’ due to Treil-Volberg. The inequalities are extended to Lp, for 1 < p ≠ 2 < ∞, with new short proofs. A result proved is as follows. Let ɛ be a monotonic increasing function on (1,∞) which satisfy Let σ and w be two weights on ℝd. If this supremum is finite, for a choice of 1 < p < ∞, then any Calderón-Zygmund operator T satisfies the bound ||Tof||Lp(w) ≲ ||f|| Lp(o).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Concrete Operators
Concrete Operators MATHEMATICS-
CiteScore
1.00
自引率
16.70%
发文量
10
审稿时长
22 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信