投影线上模空间加权点的Weil-Petersson体积的连续性

IF 0.5 Q3 MATHEMATICS
Salvatore Tambasco
{"title":"投影线上模空间加权点的Weil-Petersson体积的连续性","authors":"Salvatore Tambasco","doi":"10.1515/coma-2021-0137","DOIUrl":null,"url":null,"abstract":"Abstract In this work we show that the Weil-Petersson volume (which coincides with the CM degree) in the case of weighted points in the projective line is continuous when approaching the Calabi-Yau geometry from the Fano geometry. More specifically, the CM volume computed via localization converges to the geometric volume, computed by McMullen with different techniques, when the sum of the weights approaches the Calabi-Yau geometry.","PeriodicalId":42393,"journal":{"name":"Complex Manifolds","volume":"9 1","pages":"206 - 222"},"PeriodicalIF":0.5000,"publicationDate":"2021-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the continuity of Weil-Petersson volumes of the moduli space weighted points on the projective line\",\"authors\":\"Salvatore Tambasco\",\"doi\":\"10.1515/coma-2021-0137\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this work we show that the Weil-Petersson volume (which coincides with the CM degree) in the case of weighted points in the projective line is continuous when approaching the Calabi-Yau geometry from the Fano geometry. More specifically, the CM volume computed via localization converges to the geometric volume, computed by McMullen with different techniques, when the sum of the weights approaches the Calabi-Yau geometry.\",\"PeriodicalId\":42393,\"journal\":{\"name\":\"Complex Manifolds\",\"volume\":\"9 1\",\"pages\":\"206 - 222\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2021-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Complex Manifolds\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/coma-2021-0137\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complex Manifolds","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/coma-2021-0137","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,我们证明了在投影线上加权点的情况下,当从Fano几何接近Calabi-Yau几何时,Weil-Petersson体积(与CM度一致)是连续的。更具体地说,当权重和接近Calabi-Yau几何形状时,通过定位计算的CM体积收敛于McMullen用不同技术计算的几何体积。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the continuity of Weil-Petersson volumes of the moduli space weighted points on the projective line
Abstract In this work we show that the Weil-Petersson volume (which coincides with the CM degree) in the case of weighted points in the projective line is continuous when approaching the Calabi-Yau geometry from the Fano geometry. More specifically, the CM volume computed via localization converges to the geometric volume, computed by McMullen with different techniques, when the sum of the weights approaches the Calabi-Yau geometry.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Complex Manifolds
Complex Manifolds MATHEMATICS-
CiteScore
1.30
自引率
20.00%
发文量
14
审稿时长
25 weeks
期刊介绍: Complex Manifolds is devoted to the publication of results on these and related topics: Hermitian geometry, Kähler and hyperkähler geometry Calabi-Yau metrics, PDE''s on complex manifolds Generalized complex geometry Deformations of complex structures Twistor theory Geometric flows on complex manifolds Almost complex geometry Quaternionic geometry Geometric theory of analytic functions Holomorphic dynamics Several complex variables Dolbeault cohomology CR geometry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信