𝐻−1载荷下混合有限元和FOSLS的研究

IF 1 4区 数学 Q3 MATHEMATICS, APPLIED
T. Führer
{"title":"𝐻−1载荷下混合有限元和FOSLS的研究","authors":"T. Führer","doi":"10.1515/cmam-2022-0215","DOIUrl":null,"url":null,"abstract":"Abstract We study variants of the mixed finite element method (mixed FEM) and the first-order system least-squares finite element (FOSLS) for the Poisson problem where we replace the load by a suitable regularization which permits to use H − 1 H^{-1} loads. We prove that any bounded H − 1 H^{-1} projector onto piecewise constants can be used to define the regularization and yields quasi-optimality of the lowest-order mixed FEM resp. FOSLS in weaker norms. Examples for the construction of such projectors are given. One is based on the adjoint of a weighted Clément quasi-interpolator. We prove that this Clément operator has second-order approximation properties. For the modified mixed method, we show optimal convergence rates of a postprocessed solution under minimal regularity assumptions—a result not valid for the lowest-order mixed FEM without regularization. Numerical examples conclude this work.","PeriodicalId":48751,"journal":{"name":"Computational Methods in Applied Mathematics","volume":"0 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2023-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On a Mixed FEM and a FOSLS with 𝐻−1 Loads\",\"authors\":\"T. Führer\",\"doi\":\"10.1515/cmam-2022-0215\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We study variants of the mixed finite element method (mixed FEM) and the first-order system least-squares finite element (FOSLS) for the Poisson problem where we replace the load by a suitable regularization which permits to use H − 1 H^{-1} loads. We prove that any bounded H − 1 H^{-1} projector onto piecewise constants can be used to define the regularization and yields quasi-optimality of the lowest-order mixed FEM resp. FOSLS in weaker norms. Examples for the construction of such projectors are given. One is based on the adjoint of a weighted Clément quasi-interpolator. We prove that this Clément operator has second-order approximation properties. For the modified mixed method, we show optimal convergence rates of a postprocessed solution under minimal regularity assumptions—a result not valid for the lowest-order mixed FEM without regularization. Numerical examples conclude this work.\",\"PeriodicalId\":48751,\"journal\":{\"name\":\"Computational Methods in Applied Mathematics\",\"volume\":\"0 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2023-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Methods in Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/cmam-2022-0215\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Methods in Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/cmam-2022-0215","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

摘要研究了泊松问题的混合有限元法(mixed FEM)和一阶系统最小二乘有限元法(FOSLS)的变体,其中我们用允许使用H−1 H^{-1}载荷的适当正则化来代替载荷。我们证明了任何有界的H−1 H^{-1}投影到分段常数上,都可以用来定义最低阶混合有限元模型的正则化并给出拟最优性。FOSLS在较弱的规范。给出了这种投影仪的构造实例。一种是基于加权的classment准插值器的伴随。证明了该克莱蒙算子具有二阶逼近性质。对于改进的混合方法,我们给出了在最小正则性假设下后处理解的最优收敛速率,这一结果不适用于无正则化的最低阶混合有限元。数值算例总结了本文的工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On a Mixed FEM and a FOSLS with 𝐻−1 Loads
Abstract We study variants of the mixed finite element method (mixed FEM) and the first-order system least-squares finite element (FOSLS) for the Poisson problem where we replace the load by a suitable regularization which permits to use H − 1 H^{-1} loads. We prove that any bounded H − 1 H^{-1} projector onto piecewise constants can be used to define the regularization and yields quasi-optimality of the lowest-order mixed FEM resp. FOSLS in weaker norms. Examples for the construction of such projectors are given. One is based on the adjoint of a weighted Clément quasi-interpolator. We prove that this Clément operator has second-order approximation properties. For the modified mixed method, we show optimal convergence rates of a postprocessed solution under minimal regularity assumptions—a result not valid for the lowest-order mixed FEM without regularization. Numerical examples conclude this work.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.40
自引率
7.70%
发文量
54
期刊介绍: The highly selective international mathematical journal Computational Methods in Applied Mathematics (CMAM) considers original mathematical contributions to computational methods and numerical analysis with applications mainly related to PDEs. CMAM seeks to be interdisciplinary while retaining the common thread of numerical analysis, it is intended to be readily readable and meant for a wide circle of researchers in applied mathematics. The journal is published by De Gruyter on behalf of the Institute of Mathematics of the National Academy of Science of Belarus.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信