{"title":"一维稳定渐变流平均能量斜率估算公式的比较","authors":"W. Artichowicz, Patrycja Mikos-Studnicka","doi":"10.1515/heem-2015-0006","DOIUrl":null,"url":null,"abstract":"Abstract To find the steady flow water surface profile, it is possible to use Bernoulli’s equation, which is a discrete form of the differential energy equation. Such an approach requires the average energy slope between cross-sections to be estimated. In the literature, many methods are proposed for estimating the average energy slope in this case, such as the arithmetic mean, resulting in the standard step method, the harmonic mean and the geometric mean. Also hydraulic averaging by means of conveyance is commonly used. In this study, water surface profiles numerically computed using different formulas for expressing the average slope were compared with exact analytical solutions of the differential energy equation. Maximum relative and mean square errors between numerical and analytical solutions were used as measures of the quality of numerical models. Experiments showed that all methods gave solutions useful for practical engineering purposes. For every method, the numerical solution was very close to the analytical one. However, from the numerical viewpoint, the differences between the methods were significant, as the errors differed up to two orders of magnitude.","PeriodicalId":53658,"journal":{"name":"Archives of Hydroengineering and Environmental Mechanics","volume":"61 1","pages":"109 - 89"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/heem-2015-0006","citationCount":"3","resultStr":"{\"title\":\"Comparison of Average Energy Slope Estimation Formulas for One-dimensional Steady Gradually Varied Flow\",\"authors\":\"W. Artichowicz, Patrycja Mikos-Studnicka\",\"doi\":\"10.1515/heem-2015-0006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract To find the steady flow water surface profile, it is possible to use Bernoulli’s equation, which is a discrete form of the differential energy equation. Such an approach requires the average energy slope between cross-sections to be estimated. In the literature, many methods are proposed for estimating the average energy slope in this case, such as the arithmetic mean, resulting in the standard step method, the harmonic mean and the geometric mean. Also hydraulic averaging by means of conveyance is commonly used. In this study, water surface profiles numerically computed using different formulas for expressing the average slope were compared with exact analytical solutions of the differential energy equation. Maximum relative and mean square errors between numerical and analytical solutions were used as measures of the quality of numerical models. Experiments showed that all methods gave solutions useful for practical engineering purposes. For every method, the numerical solution was very close to the analytical one. However, from the numerical viewpoint, the differences between the methods were significant, as the errors differed up to two orders of magnitude.\",\"PeriodicalId\":53658,\"journal\":{\"name\":\"Archives of Hydroengineering and Environmental Mechanics\",\"volume\":\"61 1\",\"pages\":\"109 - 89\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/heem-2015-0006\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archives of Hydroengineering and Environmental Mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/heem-2015-0006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Environmental Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Hydroengineering and Environmental Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/heem-2015-0006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Environmental Science","Score":null,"Total":0}
Comparison of Average Energy Slope Estimation Formulas for One-dimensional Steady Gradually Varied Flow
Abstract To find the steady flow water surface profile, it is possible to use Bernoulli’s equation, which is a discrete form of the differential energy equation. Such an approach requires the average energy slope between cross-sections to be estimated. In the literature, many methods are proposed for estimating the average energy slope in this case, such as the arithmetic mean, resulting in the standard step method, the harmonic mean and the geometric mean. Also hydraulic averaging by means of conveyance is commonly used. In this study, water surface profiles numerically computed using different formulas for expressing the average slope were compared with exact analytical solutions of the differential energy equation. Maximum relative and mean square errors between numerical and analytical solutions were used as measures of the quality of numerical models. Experiments showed that all methods gave solutions useful for practical engineering purposes. For every method, the numerical solution was very close to the analytical one. However, from the numerical viewpoint, the differences between the methods were significant, as the errors differed up to two orders of magnitude.
期刊介绍:
Archives of Hydro-Engineering and Environmental Mechanics cover the broad area of disciplines related to hydro-engineering, including: hydrodynamics and hydraulics of inlands and sea waters, hydrology, hydroelasticity, ground-water hydraulics, water contamination, coastal engineering, geotechnical engineering, geomechanics, structural mechanics, etc. The main objective of Archives of Hydro-Engineering and Environmental Mechanics is to provide an up-to-date reference to the engineers and scientists engaged in the applications of mechanics to the analysis of various phenomena appearing in the natural environment.