Tianjun Zhu, A. Khajepour, A. Goodarzi, Shih-Ken Chen, B. Litkouhi
{"title":"车辆动力学控制中最优驾驶员命令解释器的开发","authors":"Tianjun Zhu, A. Khajepour, A. Goodarzi, Shih-Ken Chen, B. Litkouhi","doi":"10.1504/ijvas.2015.070731","DOIUrl":null,"url":null,"abstract":"This paper introduces a new driver command interpreter (DCI) for vehicle dynamics control, providing optimal calculation of desired CG forces and moments based on driver inputs and road conditions. The proposed DCI is established based on principles of optimal linear quadratic regulator (LQR) theory and vehicle dynamics. The optimal feed-forward and feedback gains of proposed DCI can be updated in real time by online matrix calculation. Analytical simulations and experimental test results under various driving conditions are presented to evaluate the proposed DCI and vehicle dynamics control system. The simulation and experimental results indicate that the vehicle dynamics control system using the proposed DCI can effectively stabilise the vehicle motion and improve the vehicle handling under critical driving conditions.","PeriodicalId":39322,"journal":{"name":"International Journal of Vehicle Autonomous Systems","volume":"13 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2015-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1504/ijvas.2015.070731","citationCount":"4","resultStr":"{\"title\":\"Development of an optimal driver command interpreter for vehicle dynamics control\",\"authors\":\"Tianjun Zhu, A. Khajepour, A. Goodarzi, Shih-Ken Chen, B. Litkouhi\",\"doi\":\"10.1504/ijvas.2015.070731\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces a new driver command interpreter (DCI) for vehicle dynamics control, providing optimal calculation of desired CG forces and moments based on driver inputs and road conditions. The proposed DCI is established based on principles of optimal linear quadratic regulator (LQR) theory and vehicle dynamics. The optimal feed-forward and feedback gains of proposed DCI can be updated in real time by online matrix calculation. Analytical simulations and experimental test results under various driving conditions are presented to evaluate the proposed DCI and vehicle dynamics control system. The simulation and experimental results indicate that the vehicle dynamics control system using the proposed DCI can effectively stabilise the vehicle motion and improve the vehicle handling under critical driving conditions.\",\"PeriodicalId\":39322,\"journal\":{\"name\":\"International Journal of Vehicle Autonomous Systems\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1504/ijvas.2015.070731\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Vehicle Autonomous Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/ijvas.2015.070731\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Vehicle Autonomous Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijvas.2015.070731","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
Development of an optimal driver command interpreter for vehicle dynamics control
This paper introduces a new driver command interpreter (DCI) for vehicle dynamics control, providing optimal calculation of desired CG forces and moments based on driver inputs and road conditions. The proposed DCI is established based on principles of optimal linear quadratic regulator (LQR) theory and vehicle dynamics. The optimal feed-forward and feedback gains of proposed DCI can be updated in real time by online matrix calculation. Analytical simulations and experimental test results under various driving conditions are presented to evaluate the proposed DCI and vehicle dynamics control system. The simulation and experimental results indicate that the vehicle dynamics control system using the proposed DCI can effectively stabilise the vehicle motion and improve the vehicle handling under critical driving conditions.