基于预测的自动驾驶汽车层次控制框架

Q4 Engineering
Varun Jain, T. Weiskircher
{"title":"基于预测的自动驾驶汽车层次控制框架","authors":"Varun Jain, T. Weiskircher","doi":"10.1504/IJVAS.2014.067867","DOIUrl":null,"url":null,"abstract":"The predictive nature and the constraint handling capability of Model Predictive Controllers (MPC) makes it an appropriate choice for the conceptualisation of autonomous and collision avoidance systems. Such systems aim to make the road driving potentially safer and more comfortable in the future. This research work motivates development of a hierarchical structure based on a MPC and vehicle dynamics control for path planning and collision avoidance scenarios up to the limits of vehicle handling. The proposed idea not only helps to overcome the main challenge concerned with real–time implementation of MPC, but also adds modularity to the structure, whereby the tasks of path planning and vehicle handling can be tackled independently. The control structure can easily be extended for collision avoidance and driver assistance functions with the human driver in the loop. Simulation results with ideal and high fidelity vehicle models indicate the effectiveness of MPC and show the effect of different parameters on the overall performance.","PeriodicalId":39322,"journal":{"name":"International Journal of Vehicle Autonomous Systems","volume":"12 1","pages":"307"},"PeriodicalIF":0.0000,"publicationDate":"2014-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1504/IJVAS.2014.067867","citationCount":"3","resultStr":"{\"title\":\"Prediction–based hierarchical control framework for autonomous vehicles\",\"authors\":\"Varun Jain, T. Weiskircher\",\"doi\":\"10.1504/IJVAS.2014.067867\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The predictive nature and the constraint handling capability of Model Predictive Controllers (MPC) makes it an appropriate choice for the conceptualisation of autonomous and collision avoidance systems. Such systems aim to make the road driving potentially safer and more comfortable in the future. This research work motivates development of a hierarchical structure based on a MPC and vehicle dynamics control for path planning and collision avoidance scenarios up to the limits of vehicle handling. The proposed idea not only helps to overcome the main challenge concerned with real–time implementation of MPC, but also adds modularity to the structure, whereby the tasks of path planning and vehicle handling can be tackled independently. The control structure can easily be extended for collision avoidance and driver assistance functions with the human driver in the loop. Simulation results with ideal and high fidelity vehicle models indicate the effectiveness of MPC and show the effect of different parameters on the overall performance.\",\"PeriodicalId\":39322,\"journal\":{\"name\":\"International Journal of Vehicle Autonomous Systems\",\"volume\":\"12 1\",\"pages\":\"307\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1504/IJVAS.2014.067867\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Vehicle Autonomous Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/IJVAS.2014.067867\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Vehicle Autonomous Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJVAS.2014.067867","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 3

摘要

模型预测控制器(MPC)的预测特性和约束处理能力使其成为自主和避碰系统概念化的合适选择。这样的系统旨在使未来的道路驾驶更安全、更舒适。这项研究工作激发了基于MPC和车辆动力学控制的分层结构的发展,用于路径规划和碰撞避免场景,达到车辆处理的极限。所提出的想法不仅有助于克服MPC实时实现的主要挑战,而且还增加了结构的模块化,从而可以独立处理路径规划和车辆处理任务。控制结构可以很容易地扩展到避免碰撞和驾驶员辅助功能,人类驾驶员在环路中。用理想和高保真的汽车模型进行仿真,验证了MPC的有效性,并展示了不同参数对整体性能的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Prediction–based hierarchical control framework for autonomous vehicles
The predictive nature and the constraint handling capability of Model Predictive Controllers (MPC) makes it an appropriate choice for the conceptualisation of autonomous and collision avoidance systems. Such systems aim to make the road driving potentially safer and more comfortable in the future. This research work motivates development of a hierarchical structure based on a MPC and vehicle dynamics control for path planning and collision avoidance scenarios up to the limits of vehicle handling. The proposed idea not only helps to overcome the main challenge concerned with real–time implementation of MPC, but also adds modularity to the structure, whereby the tasks of path planning and vehicle handling can be tackled independently. The control structure can easily be extended for collision avoidance and driver assistance functions with the human driver in the loop. Simulation results with ideal and high fidelity vehicle models indicate the effectiveness of MPC and show the effect of different parameters on the overall performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Vehicle Autonomous Systems
International Journal of Vehicle Autonomous Systems Engineering-Automotive Engineering
CiteScore
1.30
自引率
0.00%
发文量
0
期刊介绍: The IJVAS provides an international forum and refereed reference in the field of vehicle autonomous systems research and development.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信