André Benine-Neto, S. Scalzi, S. Mammar, M. Netto, B. Lusetti
{"title":"基于模型参考的车道偏离规避车辆横向控制","authors":"André Benine-Neto, S. Scalzi, S. Mammar, M. Netto, B. Lusetti","doi":"10.1504/IJVAS.2014.063044","DOIUrl":null,"url":null,"abstract":"This paper presents the design and practical implementation of a lane departure avoidance assistance for passenger vehicles based on a state feedback dynamic controller. The road curvature is taken into account as an internal model to ensure convergence of the lateral offset to zero at steady state, even on curvy roads. Lyapunov theory and bilinear matrix inequalities including bounds in the control input and constraints for poles clustering are used to minimise the reachable set of the vehicle after activation of the assistance. The proposed control strategy is simulated in CarSim environment and successfully tested on a prototype vehicle.","PeriodicalId":39322,"journal":{"name":"International Journal of Vehicle Autonomous Systems","volume":"12 1","pages":"284-306"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1504/IJVAS.2014.063044","citationCount":"10","resultStr":"{\"title\":\"Model reference-based vehicle lateral control for lane departure avoidance\",\"authors\":\"André Benine-Neto, S. Scalzi, S. Mammar, M. Netto, B. Lusetti\",\"doi\":\"10.1504/IJVAS.2014.063044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents the design and practical implementation of a lane departure avoidance assistance for passenger vehicles based on a state feedback dynamic controller. The road curvature is taken into account as an internal model to ensure convergence of the lateral offset to zero at steady state, even on curvy roads. Lyapunov theory and bilinear matrix inequalities including bounds in the control input and constraints for poles clustering are used to minimise the reachable set of the vehicle after activation of the assistance. The proposed control strategy is simulated in CarSim environment and successfully tested on a prototype vehicle.\",\"PeriodicalId\":39322,\"journal\":{\"name\":\"International Journal of Vehicle Autonomous Systems\",\"volume\":\"12 1\",\"pages\":\"284-306\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1504/IJVAS.2014.063044\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Vehicle Autonomous Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/IJVAS.2014.063044\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Vehicle Autonomous Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJVAS.2014.063044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
Model reference-based vehicle lateral control for lane departure avoidance
This paper presents the design and practical implementation of a lane departure avoidance assistance for passenger vehicles based on a state feedback dynamic controller. The road curvature is taken into account as an internal model to ensure convergence of the lateral offset to zero at steady state, even on curvy roads. Lyapunov theory and bilinear matrix inequalities including bounds in the control input and constraints for poles clustering are used to minimise the reachable set of the vehicle after activation of the assistance. The proposed control strategy is simulated in CarSim environment and successfully tested on a prototype vehicle.