{"title":"一种车载线结构激光二维表面粗糙度测量仪","authors":"Xiaojie Li, K. Zhao","doi":"10.1504/IJVAS.2016.078808","DOIUrl":null,"url":null,"abstract":"Surface roughness is the description of surface irregularity and micro topographic randomness. It is an important factor affecting soil microwave radiation. Since both the microwave radiometer and radar detector measure a plane, using 3D data to calculate the 2D surface roughness will get better results. In this paper, we present a line-structure laser based vehicle-borne 2D surface roughness measurement instrument which can measure a much bigger size and thus bring higher accuracy and greater capability. Meanwhile, the portability is not affected since it is carried around by a vehicle. The precision test and field test showed that the maximum average relative error is only 1.3%. We also implemented a graphics processing unit version of the data processing program, which reduced the runtime to 540 seconds from 45,393 seconds on central processing unit.","PeriodicalId":39322,"journal":{"name":"International Journal of Vehicle Autonomous Systems","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2016-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1504/IJVAS.2016.078808","citationCount":"0","resultStr":"{\"title\":\"A vehicle-borne and line-structure laser based two-dimensional surface roughness measurement instrument\",\"authors\":\"Xiaojie Li, K. Zhao\",\"doi\":\"10.1504/IJVAS.2016.078808\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Surface roughness is the description of surface irregularity and micro topographic randomness. It is an important factor affecting soil microwave radiation. Since both the microwave radiometer and radar detector measure a plane, using 3D data to calculate the 2D surface roughness will get better results. In this paper, we present a line-structure laser based vehicle-borne 2D surface roughness measurement instrument which can measure a much bigger size and thus bring higher accuracy and greater capability. Meanwhile, the portability is not affected since it is carried around by a vehicle. The precision test and field test showed that the maximum average relative error is only 1.3%. We also implemented a graphics processing unit version of the data processing program, which reduced the runtime to 540 seconds from 45,393 seconds on central processing unit.\",\"PeriodicalId\":39322,\"journal\":{\"name\":\"International Journal of Vehicle Autonomous Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1504/IJVAS.2016.078808\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Vehicle Autonomous Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/IJVAS.2016.078808\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Vehicle Autonomous Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJVAS.2016.078808","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
A vehicle-borne and line-structure laser based two-dimensional surface roughness measurement instrument
Surface roughness is the description of surface irregularity and micro topographic randomness. It is an important factor affecting soil microwave radiation. Since both the microwave radiometer and radar detector measure a plane, using 3D data to calculate the 2D surface roughness will get better results. In this paper, we present a line-structure laser based vehicle-borne 2D surface roughness measurement instrument which can measure a much bigger size and thus bring higher accuracy and greater capability. Meanwhile, the portability is not affected since it is carried around by a vehicle. The precision test and field test showed that the maximum average relative error is only 1.3%. We also implemented a graphics processing unit version of the data processing program, which reduced the runtime to 540 seconds from 45,393 seconds on central processing unit.