{"title":"祖先黄石羽流在美国西部构造演化中的作用","authors":"J. Murphy","doi":"10.12789/GEOCANJ.2016.43.105","DOIUrl":null,"url":null,"abstract":"Plate reconstructions indicate that if the Yellowstone plume existed prior to 50 Ma, then it would have been overlain by oceanic lithosphere located to the west of the North American plate (NAP). In the context of models supporting long-lived easterly directed subduction of oceanic lithosphere beneath the NAP, the Yellowstone plume would have been progressively overridden by the NAP continental margin since that time, the effects of which should be apparent in the geological record. The role of this ‘ancestral’ Yellowstone plume and its related buoyant swell in influencing the Late Mesozoic–Cenozoic tectonic evolution of the southwestern United States is reviewed in the light of recent field, analytical and geophysical data, constraints provided by more refined paleogeographic constructions, and by insights derived from recent geodynamic modeling of the interaction of a plume and a subduction zone. Geodynamic models suggesting that the ascent of plumes is either stalled or destroyed at subduction zones have focused attention on the role of gaps or tears in the subducted slab that permit the flow of plume material from the lower to the upper plate during subduction. These models imply that the ascent of plumes may be significantly deflected as plume material migrates from the lower to the upper plate, so that the connection between the hot spot track calculated from plate reconstructions and the manifestations of plume activity in the upper plate may be far more diffuse compared to the more precise relationships in the oceanic domain. Other geodynamic models support the hypothesis that subduction of oceanic plateau material beneath the NAP correlates with the generation of a flat slab, which has long been held to have been a defining characteristic of the Laramide orogeny in the western United States, the dominant Late Mesozoic–Early Cenozoic orogenic episode affecting the NAP. Over the last 20 years, a growing body of evidence from a variety of approaches suggests that a plume existed between 70 and 50 Ma within the oceanic realm close to the NAP margin in a similar location and with similar vigour to the modern Yellowstone hot spot. If so, interaction of this plume with the margin would have been preceded by that of its buoyant swell and related oceanic plateau, a scenario which could have generated the flat slab subduction that characterizes the Laramide orogeny. Unless this plume was destroyed by subduction, it would have gone into an incubation period when it was overridden by the North American margin. During this incubation period, plume material could have migrated into the upper plate via slab windows or tears or around the lateral margins of the slab, in a manner consistent with recent laboratory models. The resulting magmatic activity may be located at considerable distance from the calculated hot spot track. The current distribution of plumes and their buoyant swells suggests that their interaction with subduction zones should be common in the geological record. If so, the Late Mesozoic–Cenozoic evolution of western North America may represent a relatively modern analogue for such processes.RESUMELes reconstitutions de plaques montrent que si le panache de Yellowstone avait existe avant 50 Ma, il aurait ete recouvert par la lithosphere oceanique situee a l'ouest de la plaque nord-americaine (PNA). Dans le contexte de modeles de subduction de longue duree vers l’est de la lithosphere oceanique sous la PNA, avec le temps, la marge continentale de la PNA aurait progressivement neutralise le panache de Yellowstone, et on devrait en voir les effets dans le registre geologique. Le role de ce panache de Yellowstone « ancestral » et de son renflement de surface regional associe sur l'evolution tectonique du Sud-ouest des Etats-Unis au Mesozoique–Cenozoique tardif est reconsidere ici a la lumiere de donnees recentes, de terrain, analytiques et geophysiques, de contraintes decoulant de constructions paleogeographiques affinees, et d’idees nouvelles decoulant d’une modelisation geodynamique recente de l'interaction d'un panache et d'une zone de subduction. Les modeles geodynamiques suggerant que l'ascension des panaches soient bloquee ou detruite dans les zones de subduction ont attire l'attention sur le role d’hiatus ou de dechirures dans la plaque subduite qui permettent le passage du materiau du panache de la plaque inferieure a la plaque superieure pendant la subduction. Ces modeles impliquent que le flux ascendant des panaches peut etre sensiblement devie alors que le materiau du panache migre de la plaque inferieure a la plaque superieure, de sorte que la connexion entre la trace du point chaud calculee a partir des reconstructions de la plaque et les manifestations de l'activite du panache dans la plaque superieure peut etre bien plus diffuse que sa contrepartie du domaine oceanique. D'autres modeles geodynamiques appuient l'hypothese selon laquelle la subduction du materiau de plateau oceanique sous la PNA correspond a la generation d'une plaque plate, particularite qui a longtemps ete consideree comme caracteristique determinante de l'orogenese de Laramide dans l'ouest des Etats-Unis, episode orogenique dominante de la fin du Mesozoique au debut du Cenozoique affectant la PAN. Au cours des 20 dernieres annees, un nombre croissant d'elements de preuve provenant d'une variete d'approches suggerent qu'un panache existait bien entre 70 et 50 Ma dans le domaine oceanique pres de la marge la PNA, en un endroit et avec une vigueur similaires au point chaud de Yellowstone moderne. Le cas echeant, l'interaction de ce panache avec la marge aurait ete precedee de celle de son renflement de surface et du plateau oceanique connexe, scenario qui aurait pu generer la subduction de la plaque plate qui caracterise l'orogenese Laramide. A moins que ce panache n'ait ete detruit par subduction, il serait entre dans une periode d'incubation lorsqu’il a ete recouvert par la marge nord-americaine. Au cours de cette periode d'incubation, le materiau du panache aurait pu migrer dans la plaque superieure par des fenetres ou dechirures de la plaque ou autour des marges laterales de la plaque, conformement aux modeles recents de laboratoire. La trace de l'activite magmatique resultante pourrait se trouver alors a une distance considerable de la trace du point chaud calculee. La distribution actuelle des panaches et de leurs renflements de surface suggere que leur interaction avec les zones de subduction devrait etre un phenomene courant dans le registre geologique. Si tel est le cas, l'evolution du Mesozoique–Cenozoique tardif de l'Amerique du Nord occidentale peut representer un analogue relativement moderne pour de tels processus.","PeriodicalId":55106,"journal":{"name":"Geoscience Canada","volume":"43 1","pages":"231-250"},"PeriodicalIF":1.8000,"publicationDate":"2016-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"The Role of the Ancestral Yellowstone Plume in the Tectonic Evolution of the Western United States\",\"authors\":\"J. Murphy\",\"doi\":\"10.12789/GEOCANJ.2016.43.105\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Plate reconstructions indicate that if the Yellowstone plume existed prior to 50 Ma, then it would have been overlain by oceanic lithosphere located to the west of the North American plate (NAP). In the context of models supporting long-lived easterly directed subduction of oceanic lithosphere beneath the NAP, the Yellowstone plume would have been progressively overridden by the NAP continental margin since that time, the effects of which should be apparent in the geological record. The role of this ‘ancestral’ Yellowstone plume and its related buoyant swell in influencing the Late Mesozoic–Cenozoic tectonic evolution of the southwestern United States is reviewed in the light of recent field, analytical and geophysical data, constraints provided by more refined paleogeographic constructions, and by insights derived from recent geodynamic modeling of the interaction of a plume and a subduction zone. Geodynamic models suggesting that the ascent of plumes is either stalled or destroyed at subduction zones have focused attention on the role of gaps or tears in the subducted slab that permit the flow of plume material from the lower to the upper plate during subduction. These models imply that the ascent of plumes may be significantly deflected as plume material migrates from the lower to the upper plate, so that the connection between the hot spot track calculated from plate reconstructions and the manifestations of plume activity in the upper plate may be far more diffuse compared to the more precise relationships in the oceanic domain. Other geodynamic models support the hypothesis that subduction of oceanic plateau material beneath the NAP correlates with the generation of a flat slab, which has long been held to have been a defining characteristic of the Laramide orogeny in the western United States, the dominant Late Mesozoic–Early Cenozoic orogenic episode affecting the NAP. Over the last 20 years, a growing body of evidence from a variety of approaches suggests that a plume existed between 70 and 50 Ma within the oceanic realm close to the NAP margin in a similar location and with similar vigour to the modern Yellowstone hot spot. If so, interaction of this plume with the margin would have been preceded by that of its buoyant swell and related oceanic plateau, a scenario which could have generated the flat slab subduction that characterizes the Laramide orogeny. Unless this plume was destroyed by subduction, it would have gone into an incubation period when it was overridden by the North American margin. During this incubation period, plume material could have migrated into the upper plate via slab windows or tears or around the lateral margins of the slab, in a manner consistent with recent laboratory models. The resulting magmatic activity may be located at considerable distance from the calculated hot spot track. The current distribution of plumes and their buoyant swells suggests that their interaction with subduction zones should be common in the geological record. If so, the Late Mesozoic–Cenozoic evolution of western North America may represent a relatively modern analogue for such processes.RESUMELes reconstitutions de plaques montrent que si le panache de Yellowstone avait existe avant 50 Ma, il aurait ete recouvert par la lithosphere oceanique situee a l'ouest de la plaque nord-americaine (PNA). Dans le contexte de modeles de subduction de longue duree vers l’est de la lithosphere oceanique sous la PNA, avec le temps, la marge continentale de la PNA aurait progressivement neutralise le panache de Yellowstone, et on devrait en voir les effets dans le registre geologique. Le role de ce panache de Yellowstone « ancestral » et de son renflement de surface regional associe sur l'evolution tectonique du Sud-ouest des Etats-Unis au Mesozoique–Cenozoique tardif est reconsidere ici a la lumiere de donnees recentes, de terrain, analytiques et geophysiques, de contraintes decoulant de constructions paleogeographiques affinees, et d’idees nouvelles decoulant d’une modelisation geodynamique recente de l'interaction d'un panache et d'une zone de subduction. Les modeles geodynamiques suggerant que l'ascension des panaches soient bloquee ou detruite dans les zones de subduction ont attire l'attention sur le role d’hiatus ou de dechirures dans la plaque subduite qui permettent le passage du materiau du panache de la plaque inferieure a la plaque superieure pendant la subduction. Ces modeles impliquent que le flux ascendant des panaches peut etre sensiblement devie alors que le materiau du panache migre de la plaque inferieure a la plaque superieure, de sorte que la connexion entre la trace du point chaud calculee a partir des reconstructions de la plaque et les manifestations de l'activite du panache dans la plaque superieure peut etre bien plus diffuse que sa contrepartie du domaine oceanique. D'autres modeles geodynamiques appuient l'hypothese selon laquelle la subduction du materiau de plateau oceanique sous la PNA correspond a la generation d'une plaque plate, particularite qui a longtemps ete consideree comme caracteristique determinante de l'orogenese de Laramide dans l'ouest des Etats-Unis, episode orogenique dominante de la fin du Mesozoique au debut du Cenozoique affectant la PAN. Au cours des 20 dernieres annees, un nombre croissant d'elements de preuve provenant d'une variete d'approches suggerent qu'un panache existait bien entre 70 et 50 Ma dans le domaine oceanique pres de la marge la PNA, en un endroit et avec une vigueur similaires au point chaud de Yellowstone moderne. Le cas echeant, l'interaction de ce panache avec la marge aurait ete precedee de celle de son renflement de surface et du plateau oceanique connexe, scenario qui aurait pu generer la subduction de la plaque plate qui caracterise l'orogenese Laramide. A moins que ce panache n'ait ete detruit par subduction, il serait entre dans une periode d'incubation lorsqu’il a ete recouvert par la marge nord-americaine. Au cours de cette periode d'incubation, le materiau du panache aurait pu migrer dans la plaque superieure par des fenetres ou dechirures de la plaque ou autour des marges laterales de la plaque, conformement aux modeles recents de laboratoire. La trace de l'activite magmatique resultante pourrait se trouver alors a une distance considerable de la trace du point chaud calculee. La distribution actuelle des panaches et de leurs renflements de surface suggere que leur interaction avec les zones de subduction devrait etre un phenomene courant dans le registre geologique. Si tel est le cas, l'evolution du Mesozoique–Cenozoique tardif de l'Amerique du Nord occidentale peut representer un analogue relativement moderne pour de tels processus.\",\"PeriodicalId\":55106,\"journal\":{\"name\":\"Geoscience Canada\",\"volume\":\"43 1\",\"pages\":\"231-250\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2016-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geoscience Canada\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.12789/GEOCANJ.2016.43.105\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geoscience Canada","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.12789/GEOCANJ.2016.43.105","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
The Role of the Ancestral Yellowstone Plume in the Tectonic Evolution of the Western United States
Plate reconstructions indicate that if the Yellowstone plume existed prior to 50 Ma, then it would have been overlain by oceanic lithosphere located to the west of the North American plate (NAP). In the context of models supporting long-lived easterly directed subduction of oceanic lithosphere beneath the NAP, the Yellowstone plume would have been progressively overridden by the NAP continental margin since that time, the effects of which should be apparent in the geological record. The role of this ‘ancestral’ Yellowstone plume and its related buoyant swell in influencing the Late Mesozoic–Cenozoic tectonic evolution of the southwestern United States is reviewed in the light of recent field, analytical and geophysical data, constraints provided by more refined paleogeographic constructions, and by insights derived from recent geodynamic modeling of the interaction of a plume and a subduction zone. Geodynamic models suggesting that the ascent of plumes is either stalled or destroyed at subduction zones have focused attention on the role of gaps or tears in the subducted slab that permit the flow of plume material from the lower to the upper plate during subduction. These models imply that the ascent of plumes may be significantly deflected as plume material migrates from the lower to the upper plate, so that the connection between the hot spot track calculated from plate reconstructions and the manifestations of plume activity in the upper plate may be far more diffuse compared to the more precise relationships in the oceanic domain. Other geodynamic models support the hypothesis that subduction of oceanic plateau material beneath the NAP correlates with the generation of a flat slab, which has long been held to have been a defining characteristic of the Laramide orogeny in the western United States, the dominant Late Mesozoic–Early Cenozoic orogenic episode affecting the NAP. Over the last 20 years, a growing body of evidence from a variety of approaches suggests that a plume existed between 70 and 50 Ma within the oceanic realm close to the NAP margin in a similar location and with similar vigour to the modern Yellowstone hot spot. If so, interaction of this plume with the margin would have been preceded by that of its buoyant swell and related oceanic plateau, a scenario which could have generated the flat slab subduction that characterizes the Laramide orogeny. Unless this plume was destroyed by subduction, it would have gone into an incubation period when it was overridden by the North American margin. During this incubation period, plume material could have migrated into the upper plate via slab windows or tears or around the lateral margins of the slab, in a manner consistent with recent laboratory models. The resulting magmatic activity may be located at considerable distance from the calculated hot spot track. The current distribution of plumes and their buoyant swells suggests that their interaction with subduction zones should be common in the geological record. If so, the Late Mesozoic–Cenozoic evolution of western North America may represent a relatively modern analogue for such processes.RESUMELes reconstitutions de plaques montrent que si le panache de Yellowstone avait existe avant 50 Ma, il aurait ete recouvert par la lithosphere oceanique situee a l'ouest de la plaque nord-americaine (PNA). Dans le contexte de modeles de subduction de longue duree vers l’est de la lithosphere oceanique sous la PNA, avec le temps, la marge continentale de la PNA aurait progressivement neutralise le panache de Yellowstone, et on devrait en voir les effets dans le registre geologique. Le role de ce panache de Yellowstone « ancestral » et de son renflement de surface regional associe sur l'evolution tectonique du Sud-ouest des Etats-Unis au Mesozoique–Cenozoique tardif est reconsidere ici a la lumiere de donnees recentes, de terrain, analytiques et geophysiques, de contraintes decoulant de constructions paleogeographiques affinees, et d’idees nouvelles decoulant d’une modelisation geodynamique recente de l'interaction d'un panache et d'une zone de subduction. Les modeles geodynamiques suggerant que l'ascension des panaches soient bloquee ou detruite dans les zones de subduction ont attire l'attention sur le role d’hiatus ou de dechirures dans la plaque subduite qui permettent le passage du materiau du panache de la plaque inferieure a la plaque superieure pendant la subduction. Ces modeles impliquent que le flux ascendant des panaches peut etre sensiblement devie alors que le materiau du panache migre de la plaque inferieure a la plaque superieure, de sorte que la connexion entre la trace du point chaud calculee a partir des reconstructions de la plaque et les manifestations de l'activite du panache dans la plaque superieure peut etre bien plus diffuse que sa contrepartie du domaine oceanique. D'autres modeles geodynamiques appuient l'hypothese selon laquelle la subduction du materiau de plateau oceanique sous la PNA correspond a la generation d'une plaque plate, particularite qui a longtemps ete consideree comme caracteristique determinante de l'orogenese de Laramide dans l'ouest des Etats-Unis, episode orogenique dominante de la fin du Mesozoique au debut du Cenozoique affectant la PAN. Au cours des 20 dernieres annees, un nombre croissant d'elements de preuve provenant d'une variete d'approches suggerent qu'un panache existait bien entre 70 et 50 Ma dans le domaine oceanique pres de la marge la PNA, en un endroit et avec une vigueur similaires au point chaud de Yellowstone moderne. Le cas echeant, l'interaction de ce panache avec la marge aurait ete precedee de celle de son renflement de surface et du plateau oceanique connexe, scenario qui aurait pu generer la subduction de la plaque plate qui caracterise l'orogenese Laramide. A moins que ce panache n'ait ete detruit par subduction, il serait entre dans une periode d'incubation lorsqu’il a ete recouvert par la marge nord-americaine. Au cours de cette periode d'incubation, le materiau du panache aurait pu migrer dans la plaque superieure par des fenetres ou dechirures de la plaque ou autour des marges laterales de la plaque, conformement aux modeles recents de laboratoire. La trace de l'activite magmatique resultante pourrait se trouver alors a une distance considerable de la trace du point chaud calculee. La distribution actuelle des panaches et de leurs renflements de surface suggere que leur interaction avec les zones de subduction devrait etre un phenomene courant dans le registre geologique. Si tel est le cas, l'evolution du Mesozoique–Cenozoique tardif de l'Amerique du Nord occidentale peut representer un analogue relativement moderne pour de tels processus.
期刊介绍:
Established in 1974, Geoscience Canada is the main technical publication of the Geological Association of Canada (GAC). We are a quarterly journal that emphasizes diversity of material, and also the presentation of informative technical articles that can be understood not only by specialist research workers, but by non-specialists in other branches of the Earth Sciences. We aim to be a journal that you want to read, and which will leave you better informed, rather than more confused.