{"title":"不同功率方法在感应发电机故障检测与诊断中的仿真","authors":"A. Leksir, B. Bensaker","doi":"10.1504/IJPEC.2019.10011919","DOIUrl":null,"url":null,"abstract":"This paper deals with a simulation of different power methods to detect and diagnose induction generator faults. Instantaneous partial and total power, active and reactive power, complex apparent power and transformed power from mechanic to electric nature are revisited, simulated and discussed in this paper for induction generator rotor broken bars and stator short cuts faults detection and diagnosis. Fast Fourier transform (FFT) and PQ transform algorithms are used as comparison tools. Simulation results show that, on one hand, active, reactive and complex apparent power can only be used to detect evolution of rotor faults. On the other hand, partial, total and power transferred from mechanical to electrical nature are able to detect induction generator faults evolution with the advantage of eliminating electrical distortions and influence of low quality of supplying voltage. Furthermore, the implementation of the PQ transformation offers the possibility to isolate load influence from rotor faults and stator ones.","PeriodicalId":38524,"journal":{"name":"International Journal of Power and Energy Conversion","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simulation of Different Power Methods for Induction Generator Faults Detection and Diagnosis\",\"authors\":\"A. Leksir, B. Bensaker\",\"doi\":\"10.1504/IJPEC.2019.10011919\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper deals with a simulation of different power methods to detect and diagnose induction generator faults. Instantaneous partial and total power, active and reactive power, complex apparent power and transformed power from mechanic to electric nature are revisited, simulated and discussed in this paper for induction generator rotor broken bars and stator short cuts faults detection and diagnosis. Fast Fourier transform (FFT) and PQ transform algorithms are used as comparison tools. Simulation results show that, on one hand, active, reactive and complex apparent power can only be used to detect evolution of rotor faults. On the other hand, partial, total and power transferred from mechanical to electrical nature are able to detect induction generator faults evolution with the advantage of eliminating electrical distortions and influence of low quality of supplying voltage. Furthermore, the implementation of the PQ transformation offers the possibility to isolate load influence from rotor faults and stator ones.\",\"PeriodicalId\":38524,\"journal\":{\"name\":\"International Journal of Power and Energy Conversion\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Power and Energy Conversion\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/IJPEC.2019.10011919\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Energy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Power and Energy Conversion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJPEC.2019.10011919","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Energy","Score":null,"Total":0}
Simulation of Different Power Methods for Induction Generator Faults Detection and Diagnosis
This paper deals with a simulation of different power methods to detect and diagnose induction generator faults. Instantaneous partial and total power, active and reactive power, complex apparent power and transformed power from mechanic to electric nature are revisited, simulated and discussed in this paper for induction generator rotor broken bars and stator short cuts faults detection and diagnosis. Fast Fourier transform (FFT) and PQ transform algorithms are used as comparison tools. Simulation results show that, on one hand, active, reactive and complex apparent power can only be used to detect evolution of rotor faults. On the other hand, partial, total and power transferred from mechanical to electrical nature are able to detect induction generator faults evolution with the advantage of eliminating electrical distortions and influence of low quality of supplying voltage. Furthermore, the implementation of the PQ transformation offers the possibility to isolate load influence from rotor faults and stator ones.
期刊介绍:
IJPEC highlights the latest trends in research in the field of power generation, transmission and distribution. Currently there exist significant challenges in the power sector, particularly in deregulated/restructured power markets. A key challenge to the operation, control and protection of the power system is the proliferation of power electronic devices within power systems. The main thrust of IJPEC is to disseminate the latest research trends in the power sector as well as in energy conversion technologies. Topics covered include: -Power system modelling and analysis -Computing and economics -FACTS and HVDC -Challenges in restructured energy systems -Power system control, operation, communications, SCADA -Power system relaying/protection -Energy management systems/distribution automation -Applications of power electronics to power systems -Power quality -Distributed generation and renewable energy sources -Electrical machines and drives -Utilisation of electrical energy -Modelling and control of machines -Fault diagnosis in machines and drives -Special machines