{"title":"基于HGAPSO-FOPID控制算法的人工胰腺设计","authors":"Anuja Nanda, A. Patra","doi":"10.1504/ijbet.2023.10057981","DOIUrl":null,"url":null,"abstract":"","PeriodicalId":51752,"journal":{"name":"International Journal of Biomedical Engineering and Technology","volume":"1 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design of artificial pancreas based on HGAPSO-FOPID control algorithm\",\"authors\":\"Anuja Nanda, A. Patra\",\"doi\":\"10.1504/ijbet.2023.10057981\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\",\"PeriodicalId\":51752,\"journal\":{\"name\":\"International Journal of Biomedical Engineering and Technology\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Biomedical Engineering and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/ijbet.2023.10057981\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biomedical Engineering and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijbet.2023.10057981","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
期刊介绍:
IJBET addresses cutting-edge research in the multi-disciplinary area of biomedical engineering and technology. Medical science incorporates scientific/technological advances combining to produce more accurate diagnoses, effective treatments with fewer side effects, and improved ability to prevent disease and provide superior-quality healthcare. A key field here is biomedical engineering/technology, offering a synthesis of physical, chemical, mathematical and computational sciences combined with engineering principles to enhance R&D in biology, medicine, behaviour, and health. Topics covered include Artificial organs Automated patient monitoring Advanced therapeutic and surgical devices Application of expert systems and AI to clinical decision making Biomaterials design Biomechanics of injury and wound healing Blood chemistry sensors Computer modelling of physiologic systems Design of optimal clinical laboratories Medical imaging systems Sports medicine.