基于核的散射氡数据图像重建

IF 0.6 Q3 MATHEMATICS
S. Marchi, A. Iske, A. Sironi
{"title":"基于核的散射氡数据图像重建","authors":"S. Marchi, A. Iske, A. Sironi","doi":"10.14658/PUPJ-DRNA-2016-SPECIAL_ISSUE-4","DOIUrl":null,"url":null,"abstract":"Computerized tomography requires suitable numerical methods for the approximation of a bivariate function f from a finite set of discrete Radon data, each of whose data samples represents one line integral of f . In standard reconstruction methods, specific assumptions concerning the geometry of the Radon lines are usually made. In relevant applications of image reconstruction, however, such assumptions are often too restrictive. In this case, one would rather prefer to work with reconstruction methods allowing for arbitrary distributions of scattered Radon lines. This paper proposes a novel image reconstruction method for scattered Radon data, which combines kernel-based scattered data approximation with a well-adapted regularization of the Radon transform. This results in a very flexible numerical algorithm for image reconstruction, which works for arbitrary distributions of Radon lines. This is in contrast to the classical filtered back projection, which essentially relies on a regular distribution of the Radon lines, e.g. parallel beam geometry. The good performance of the kernel-based image reconstruction method is illustrated by numerical examples and comparisons.","PeriodicalId":51943,"journal":{"name":"Dolomites Research Notes on Approximation","volume":"9 1","pages":"19-31"},"PeriodicalIF":0.6000,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Kernel-based Image Reconstruction from Scattered Radon Data\",\"authors\":\"S. Marchi, A. Iske, A. Sironi\",\"doi\":\"10.14658/PUPJ-DRNA-2016-SPECIAL_ISSUE-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Computerized tomography requires suitable numerical methods for the approximation of a bivariate function f from a finite set of discrete Radon data, each of whose data samples represents one line integral of f . In standard reconstruction methods, specific assumptions concerning the geometry of the Radon lines are usually made. In relevant applications of image reconstruction, however, such assumptions are often too restrictive. In this case, one would rather prefer to work with reconstruction methods allowing for arbitrary distributions of scattered Radon lines. This paper proposes a novel image reconstruction method for scattered Radon data, which combines kernel-based scattered data approximation with a well-adapted regularization of the Radon transform. This results in a very flexible numerical algorithm for image reconstruction, which works for arbitrary distributions of Radon lines. This is in contrast to the classical filtered back projection, which essentially relies on a regular distribution of the Radon lines, e.g. parallel beam geometry. The good performance of the kernel-based image reconstruction method is illustrated by numerical examples and comparisons.\",\"PeriodicalId\":51943,\"journal\":{\"name\":\"Dolomites Research Notes on Approximation\",\"volume\":\"9 1\",\"pages\":\"19-31\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2016-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Dolomites Research Notes on Approximation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14658/PUPJ-DRNA-2016-SPECIAL_ISSUE-4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dolomites Research Notes on Approximation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14658/PUPJ-DRNA-2016-SPECIAL_ISSUE-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 5

摘要

计算机断层扫描需要合适的数值方法来从有限的离散Radon数据集近似二元函数f,每个Radon数据样本代表f的一个线积分。在标准的重建方法中,通常对氡线的几何形状作出特定的假设。然而,在图像重建的相关应用中,这种假设往往过于严格。在这种情况下,人们宁愿使用允许散射氡线任意分布的重建方法。本文提出了一种新的Radon散射数据图像重建方法,该方法将基于核的散射数据近似与Radon变换的自适应正则化相结合。这导致了一个非常灵活的图像重建数值算法,适用于任意分布的氡线。这与经典的滤波后投影相反,后者基本上依赖于氡线的规则分布,例如平行光束几何。通过数值算例和比较说明了基于核的图像重建方法的良好性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Kernel-based Image Reconstruction from Scattered Radon Data
Computerized tomography requires suitable numerical methods for the approximation of a bivariate function f from a finite set of discrete Radon data, each of whose data samples represents one line integral of f . In standard reconstruction methods, specific assumptions concerning the geometry of the Radon lines are usually made. In relevant applications of image reconstruction, however, such assumptions are often too restrictive. In this case, one would rather prefer to work with reconstruction methods allowing for arbitrary distributions of scattered Radon lines. This paper proposes a novel image reconstruction method for scattered Radon data, which combines kernel-based scattered data approximation with a well-adapted regularization of the Radon transform. This results in a very flexible numerical algorithm for image reconstruction, which works for arbitrary distributions of Radon lines. This is in contrast to the classical filtered back projection, which essentially relies on a regular distribution of the Radon lines, e.g. parallel beam geometry. The good performance of the kernel-based image reconstruction method is illustrated by numerical examples and comparisons.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
7.70%
发文量
0
审稿时长
8 weeks
期刊介绍: Dolomites Research Notes on Approximation is an open access journal that publishes peer-reviewed papers. It also publishes lecture notes and slides of the tutorials presented at the annual Dolomites Research Weeks and Workshops, which have been organized regularly since 2006 by the Padova-Verona Research Group on Constructive Approximation and Applications (CAA) in Alba di Canazei (Trento, Italy). The journal publishes, on invitation, survey papers and summaries of Ph.D. theses on approximation theory, algorithms, and applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信