Zhengyu Jiang , Quin T. Waterbury , Ermanno Malagola , Na Fu , Woosook Kim , Yosuke Ochiai , Feijing Wu , Chandan Guha , Carrie J. Shawber , Kelley S. Yan , Timothy C. Wang
{"title":"未成熟髓细胞的微生物依赖性募集促进肠道再生。","authors":"Zhengyu Jiang , Quin T. Waterbury , Ermanno Malagola , Na Fu , Woosook Kim , Yosuke Ochiai , Feijing Wu , Chandan Guha , Carrie J. Shawber , Kelley S. Yan , Timothy C. Wang","doi":"10.1016/j.jcmgh.2023.10.007","DOIUrl":null,"url":null,"abstract":"<div><h3>Background & Aims</h3><p>The intestinal epithelium functions both in nutrient absorption and as a barrier, separating the luminal contents from a network of vascular, fibroblastic, and immune cells underneath. After injury to the intestine, multiple cell populations cooperate to drive regeneration of the mucosal barrier, including lymphatic endothelial cells (LECs). A population of granulocytic immature myeloid cells (IMCs), marked by <em>Hdc</em>, participate in regeneration of multiple organs such as the colon and central nervous system, and their contribution to intestinal regeneration was investigated.</p></div><div><h3>Methods</h3><p>By using male and female histidine decarboxylase (Hdc) green fluorescent reporter (GFP) mice, we investigated the role of Hdc<sup>+</sup> IMCs in intestinal regeneration after exposure to 12 Gy whole-body irradiation. The movement of IMCs was analyzed using flow cytometry and immunostaining. Ablation of Hdc<sup>+</sup> cells using the Hdc<sup>CreERT2</sup> tamoxifen-inducible recombinase Cre system, conditional knockout of Prostaglandin-endoperoxidase synthase 2 (<em>Ptgs2</em><em>)</em> in Hdc<sup>+</sup> cells using Hdc<sup>Cre</sup>; Ptgs2 floxed mice, and visualization of LECs using Prox1<sup>tdTomato</sup> mice also was performed. The role of microbial signals was investigated by knocking down mice gut microbiomes using antibiotic cocktail gavages.</p></div><div><h3>Results</h3><p>We found that Hdc<sup>+</sup> IMCs infiltrate the injured intestine after irradiation injury and promote epithelial regeneration in part by modulating LEC activity. Hdc<sup>+</sup> IMCs express <em>Ptgs2</em> (encoding cyclooxygenase-2/COX-2), and enables them to produce prostaglandin E<sub>2</sub>. Prostaglandin E<sub>2</sub> acts on the prostaglandin E<sub>2</sub> receptor 4 receptor (EP4) on LECs to promote lymphangiogenesis and induce the expression of proregenerative factors including R-spondin 3. Depletion of gut microbes leads to reduced intestinal regeneration by impaired recruitment of IMCs.</p></div><div><h3>Conclusions</h3><p>Altogether, our results unveil a critical role for IMCs in intestinal repair by modulating LEC activity and implicate gut microbes as mediators of intestinal regeneration.</p></div>","PeriodicalId":55974,"journal":{"name":"Cellular and Molecular Gastroenterology and Hepatology","volume":"17 3","pages":"Pages 321-346"},"PeriodicalIF":7.1000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2352345X23001868/pdfft?md5=cd8dff9258af4c6988d6e5fbf33d2526&pid=1-s2.0-S2352345X23001868-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Microbial-Dependent Recruitment of Immature Myeloid Cells Promotes Intestinal Regeneration\",\"authors\":\"Zhengyu Jiang , Quin T. Waterbury , Ermanno Malagola , Na Fu , Woosook Kim , Yosuke Ochiai , Feijing Wu , Chandan Guha , Carrie J. Shawber , Kelley S. Yan , Timothy C. Wang\",\"doi\":\"10.1016/j.jcmgh.2023.10.007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background & Aims</h3><p>The intestinal epithelium functions both in nutrient absorption and as a barrier, separating the luminal contents from a network of vascular, fibroblastic, and immune cells underneath. After injury to the intestine, multiple cell populations cooperate to drive regeneration of the mucosal barrier, including lymphatic endothelial cells (LECs). A population of granulocytic immature myeloid cells (IMCs), marked by <em>Hdc</em>, participate in regeneration of multiple organs such as the colon and central nervous system, and their contribution to intestinal regeneration was investigated.</p></div><div><h3>Methods</h3><p>By using male and female histidine decarboxylase (Hdc) green fluorescent reporter (GFP) mice, we investigated the role of Hdc<sup>+</sup> IMCs in intestinal regeneration after exposure to 12 Gy whole-body irradiation. The movement of IMCs was analyzed using flow cytometry and immunostaining. Ablation of Hdc<sup>+</sup> cells using the Hdc<sup>CreERT2</sup> tamoxifen-inducible recombinase Cre system, conditional knockout of Prostaglandin-endoperoxidase synthase 2 (<em>Ptgs2</em><em>)</em> in Hdc<sup>+</sup> cells using Hdc<sup>Cre</sup>; Ptgs2 floxed mice, and visualization of LECs using Prox1<sup>tdTomato</sup> mice also was performed. The role of microbial signals was investigated by knocking down mice gut microbiomes using antibiotic cocktail gavages.</p></div><div><h3>Results</h3><p>We found that Hdc<sup>+</sup> IMCs infiltrate the injured intestine after irradiation injury and promote epithelial regeneration in part by modulating LEC activity. Hdc<sup>+</sup> IMCs express <em>Ptgs2</em> (encoding cyclooxygenase-2/COX-2), and enables them to produce prostaglandin E<sub>2</sub>. Prostaglandin E<sub>2</sub> acts on the prostaglandin E<sub>2</sub> receptor 4 receptor (EP4) on LECs to promote lymphangiogenesis and induce the expression of proregenerative factors including R-spondin 3. Depletion of gut microbes leads to reduced intestinal regeneration by impaired recruitment of IMCs.</p></div><div><h3>Conclusions</h3><p>Altogether, our results unveil a critical role for IMCs in intestinal repair by modulating LEC activity and implicate gut microbes as mediators of intestinal regeneration.</p></div>\",\"PeriodicalId\":55974,\"journal\":{\"name\":\"Cellular and Molecular Gastroenterology and Hepatology\",\"volume\":\"17 3\",\"pages\":\"Pages 321-346\"},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2352345X23001868/pdfft?md5=cd8dff9258af4c6988d6e5fbf33d2526&pid=1-s2.0-S2352345X23001868-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cellular and Molecular Gastroenterology and Hepatology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352345X23001868\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GASTROENTEROLOGY & HEPATOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular and Molecular Gastroenterology and Hepatology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352345X23001868","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GASTROENTEROLOGY & HEPATOLOGY","Score":null,"Total":0}
Microbial-Dependent Recruitment of Immature Myeloid Cells Promotes Intestinal Regeneration
Background & Aims
The intestinal epithelium functions both in nutrient absorption and as a barrier, separating the luminal contents from a network of vascular, fibroblastic, and immune cells underneath. After injury to the intestine, multiple cell populations cooperate to drive regeneration of the mucosal barrier, including lymphatic endothelial cells (LECs). A population of granulocytic immature myeloid cells (IMCs), marked by Hdc, participate in regeneration of multiple organs such as the colon and central nervous system, and their contribution to intestinal regeneration was investigated.
Methods
By using male and female histidine decarboxylase (Hdc) green fluorescent reporter (GFP) mice, we investigated the role of Hdc+ IMCs in intestinal regeneration after exposure to 12 Gy whole-body irradiation. The movement of IMCs was analyzed using flow cytometry and immunostaining. Ablation of Hdc+ cells using the HdcCreERT2 tamoxifen-inducible recombinase Cre system, conditional knockout of Prostaglandin-endoperoxidase synthase 2 (Ptgs2) in Hdc+ cells using HdcCre; Ptgs2 floxed mice, and visualization of LECs using Prox1tdTomato mice also was performed. The role of microbial signals was investigated by knocking down mice gut microbiomes using antibiotic cocktail gavages.
Results
We found that Hdc+ IMCs infiltrate the injured intestine after irradiation injury and promote epithelial regeneration in part by modulating LEC activity. Hdc+ IMCs express Ptgs2 (encoding cyclooxygenase-2/COX-2), and enables them to produce prostaglandin E2. Prostaglandin E2 acts on the prostaglandin E2 receptor 4 receptor (EP4) on LECs to promote lymphangiogenesis and induce the expression of proregenerative factors including R-spondin 3. Depletion of gut microbes leads to reduced intestinal regeneration by impaired recruitment of IMCs.
Conclusions
Altogether, our results unveil a critical role for IMCs in intestinal repair by modulating LEC activity and implicate gut microbes as mediators of intestinal regeneration.
期刊介绍:
"Cell and Molecular Gastroenterology and Hepatology (CMGH)" is a journal dedicated to advancing the understanding of digestive biology through impactful research that spans the spectrum of normal gastrointestinal, hepatic, and pancreatic functions, as well as their pathologies. The journal's mission is to publish high-quality, hypothesis-driven studies that offer mechanistic novelty and are methodologically robust, covering a wide range of themes in gastroenterology, hepatology, and pancreatology.
CMGH reports on the latest scientific advances in cell biology, immunology, physiology, microbiology, genetics, and neurobiology related to gastrointestinal, hepatobiliary, and pancreatic health and disease. The research published in CMGH is designed to address significant questions in the field, utilizing a variety of experimental approaches, including in vitro models, patient-derived tissues or cells, and animal models. This multifaceted approach enables the journal to contribute to both fundamental discoveries and their translation into clinical applications, ultimately aiming to improve patient care and treatment outcomes in digestive health.