考虑磨削工具形貌的微磨削过程建模

Q3 Engineering
M. Kadivar, Ali Zahedi, B. Azarhoushang, P. Krajnik
{"title":"考虑磨削工具形貌的微磨削过程建模","authors":"M. Kadivar, Ali Zahedi, B. Azarhoushang, P. Krajnik","doi":"10.1504/IJAT.2017.10010200","DOIUrl":null,"url":null,"abstract":"The micro topography of the grinding tool has a considerable influence on the cutting forces and temperature as well as the tool wear. This paper addresses an analytical modelling of the micro-grinding process based on the real tool topography and kinematic modelling of the cutting-edgeworkpiece interactions. An approximate shape of the abrasive grains and their distribution is obtained from the confocal images, which are taken from the tool surface - determining the grain height protrusion and the probability density function of the grains. To determine the grinding forces, a transient kinematic approach is developed. In this method, the individual grit interaction with the workpiece is extended to the whole cutting zone in the peripheral flank grinding operation. Hence a predictive model of cutting forces and surface roughness in micro grinding of titanium grade 5 is developed. Finally, the simulated forces and surface roughness are validated by the experimental results.","PeriodicalId":39039,"journal":{"name":"International Journal of Abrasive Technology","volume":"8 1","pages":"157-170"},"PeriodicalIF":0.0000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Modelling of the micro-grinding process considering the grinding tool topography\",\"authors\":\"M. Kadivar, Ali Zahedi, B. Azarhoushang, P. Krajnik\",\"doi\":\"10.1504/IJAT.2017.10010200\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The micro topography of the grinding tool has a considerable influence on the cutting forces and temperature as well as the tool wear. This paper addresses an analytical modelling of the micro-grinding process based on the real tool topography and kinematic modelling of the cutting-edgeworkpiece interactions. An approximate shape of the abrasive grains and their distribution is obtained from the confocal images, which are taken from the tool surface - determining the grain height protrusion and the probability density function of the grains. To determine the grinding forces, a transient kinematic approach is developed. In this method, the individual grit interaction with the workpiece is extended to the whole cutting zone in the peripheral flank grinding operation. Hence a predictive model of cutting forces and surface roughness in micro grinding of titanium grade 5 is developed. Finally, the simulated forces and surface roughness are validated by the experimental results.\",\"PeriodicalId\":39039,\"journal\":{\"name\":\"International Journal of Abrasive Technology\",\"volume\":\"8 1\",\"pages\":\"157-170\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Abrasive Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/IJAT.2017.10010200\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Abrasive Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJAT.2017.10010200","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 6

摘要

磨削刀具的微观形貌对切削力、切削温度以及刀具的磨损有相当大的影响。基于真实刀具形貌和刀具刃口与工件相互作用的运动学建模,建立了微磨削过程的解析模型。从刀具表面的共聚焦图像中得到磨料颗粒的近似形状及其分布,确定了颗粒的高度、突出度和颗粒的概率密度函数。为了确定磨削力,提出了一种瞬态运动学方法。在这种方法中,单个砂粒与工件的相互作用扩展到整个切削区域。在此基础上,建立了5级钛微磨削切削力与表面粗糙度的预测模型。最后,用实验结果验证了模拟力和表面粗糙度的正确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modelling of the micro-grinding process considering the grinding tool topography
The micro topography of the grinding tool has a considerable influence on the cutting forces and temperature as well as the tool wear. This paper addresses an analytical modelling of the micro-grinding process based on the real tool topography and kinematic modelling of the cutting-edgeworkpiece interactions. An approximate shape of the abrasive grains and their distribution is obtained from the confocal images, which are taken from the tool surface - determining the grain height protrusion and the probability density function of the grains. To determine the grinding forces, a transient kinematic approach is developed. In this method, the individual grit interaction with the workpiece is extended to the whole cutting zone in the peripheral flank grinding operation. Hence a predictive model of cutting forces and surface roughness in micro grinding of titanium grade 5 is developed. Finally, the simulated forces and surface roughness are validated by the experimental results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Abrasive Technology
International Journal of Abrasive Technology Engineering-Industrial and Manufacturing Engineering
CiteScore
0.90
自引率
0.00%
发文量
13
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信