{"title":"基于Modelica的磁流变制动器多域统一建模及控制参数优化","authors":"Zhihua Li, Longhao Yuan, Chaoqun Nie","doi":"10.1504/IJMSI.2016.079639","DOIUrl":null,"url":null,"abstract":"In order to solve the problem of modelling, simulation and optimisation of magnetorheological brake (MR brake) which is a multi-domain coupling system, the braking performance and control parameters optimisation of MR brake were investigated under a quarter-car model. Firstly, based on Modelica/MWorks platform, using multi-domain unified modelling method, a multi-domain unified MR brake model with anti-lock braking system (ABS) was built. Then by using response surface method (RSM), the response surface function to express the relation between braking distance and three control parameters was formulated, and the optimisation problem of control parameters was solved at MWorks. Finally, according to the optimal control parameters and the structure parameters of MR brake designed by our group before, the simulation of the multi-domain unified MR brake model was done to analyse the change regularity of vehicle speed, slip ratio, braking distance, control current, braking time, etc. under the effect of controller. Results show that MR brake with optimal control parameters has a good braking performance and can meet the requirements of GB7258-2012 standard. This lays the foundation of application of MR brake in vehicles.","PeriodicalId":39035,"journal":{"name":"International Journal of Materials and Structural Integrity","volume":"10 1","pages":"81"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1504/IJMSI.2016.079639","citationCount":"0","resultStr":"{\"title\":\"Multi-domain unified modelling and control parameters optimisation of magnetorheological brake based on Modelica\",\"authors\":\"Zhihua Li, Longhao Yuan, Chaoqun Nie\",\"doi\":\"10.1504/IJMSI.2016.079639\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to solve the problem of modelling, simulation and optimisation of magnetorheological brake (MR brake) which is a multi-domain coupling system, the braking performance and control parameters optimisation of MR brake were investigated under a quarter-car model. Firstly, based on Modelica/MWorks platform, using multi-domain unified modelling method, a multi-domain unified MR brake model with anti-lock braking system (ABS) was built. Then by using response surface method (RSM), the response surface function to express the relation between braking distance and three control parameters was formulated, and the optimisation problem of control parameters was solved at MWorks. Finally, according to the optimal control parameters and the structure parameters of MR brake designed by our group before, the simulation of the multi-domain unified MR brake model was done to analyse the change regularity of vehicle speed, slip ratio, braking distance, control current, braking time, etc. under the effect of controller. Results show that MR brake with optimal control parameters has a good braking performance and can meet the requirements of GB7258-2012 standard. This lays the foundation of application of MR brake in vehicles.\",\"PeriodicalId\":39035,\"journal\":{\"name\":\"International Journal of Materials and Structural Integrity\",\"volume\":\"10 1\",\"pages\":\"81\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1504/IJMSI.2016.079639\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Materials and Structural Integrity\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/IJMSI.2016.079639\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Materials and Structural Integrity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJMSI.2016.079639","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
Multi-domain unified modelling and control parameters optimisation of magnetorheological brake based on Modelica
In order to solve the problem of modelling, simulation and optimisation of magnetorheological brake (MR brake) which is a multi-domain coupling system, the braking performance and control parameters optimisation of MR brake were investigated under a quarter-car model. Firstly, based on Modelica/MWorks platform, using multi-domain unified modelling method, a multi-domain unified MR brake model with anti-lock braking system (ABS) was built. Then by using response surface method (RSM), the response surface function to express the relation between braking distance and three control parameters was formulated, and the optimisation problem of control parameters was solved at MWorks. Finally, according to the optimal control parameters and the structure parameters of MR brake designed by our group before, the simulation of the multi-domain unified MR brake model was done to analyse the change regularity of vehicle speed, slip ratio, braking distance, control current, braking time, etc. under the effect of controller. Results show that MR brake with optimal control parameters has a good braking performance and can meet the requirements of GB7258-2012 standard. This lays the foundation of application of MR brake in vehicles.